An update on the management of chronic hepatitis C: 2015 Consensus guidelines from the Canadian Association for the Study of the Liver

Robert P Myers MD MSc1*, Hemant Shah MD MScCH HPTE2*, Kelly W Burak MD MSc1, Curtis Cooper MD3, Jordan J Feld MD MPH2*

Chronic hepatitis C remains a significant medical and economic burden in Canada, affecting nearly 1% of the population. Since the last Canadian consensus conference on the management of chronic hepatitis C, major advances have occurred that warrant a review of recommended management approaches for these patients. Specifically, direct-acting antiviral agents with dramatically improved rates of virological clearance compared with standard therapy have been developed and interferon-free, all-oral antiviral regimens have been approved. In light of this new evidence, an update to the 2012 Canadian Association for the Study of the Liver consensus guidelines on the management of hepatitis C was produced. The present document reviews the epidemiology of hepatitis C in Canada, preferred diagnostic testing approaches and recommendations for the treatment of chronically infected patients with the newly approved antiviral agents, including those who have previously failed peginterferon and ribavirin-based therapy. In addition, recommendations are made regarding approaches to reducing the burden of hepatitis C in Canada.

Key Words: Dasabuvir; Direct-acting antivirals; Guideline; Hepatitis C; Interferon; Ledipasvir; Ombitasvir; Paritaprevir; Peginterferon; Simeprevir; Sofosbuvir; Ribavirin; Therapy; Treatment

Since the last update of the CASL management guidelines for chronic hepatitis C (CHC) in 2012 (3), major advances have occurred including: the approval of novel direct-acting antiviral agents (DAAs) used with pegylated interferon (PEG-IFN) that have improved efficacy and tolerability compared with first-generation DAAs and/or standard PEG-IFN-based therapy (5-7); and the approval of oral, IFN-free, DAA combination therapies with markedly improved efficacy and tolerability and activity beyond just HCV genotype 1 (5,8-15). The current document was developed as an update to previous guidelines with a focus on the management of HCV-infected patients rather than an exhaustive review of CHC or HCV screening. Future guidelines will include ‘special populations’ with CHC, including people who use injection drugs (PWIDs), incarcerated individuals, patients with decompensated cirrhosis, those pre- or post-transplantation, and patients with HIV/HCV coinfection (for whom relevant guidelines have recently been published by the Canadian Institute of Health Research HIV Trials Network) (16). Due to the rapidity of advances in this field, recommendations in the present document will be updated regularly as new information emerges and novel agents are approved.

*Authors who contributed equally to this work.

1Liver Unit, Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta; 2Toronto Western Hospital Liver Centre, University of Toronto, Toronto; 3Division of Infectious Diseases, University of Ottawa, Ottawa, Ontario

Correspondence: Dr Jordan J Feld, Toronto Western Hospital Liver Centre, University Health Network, McLaughlin-Rotman Centre for Global Health, Telephone 416-603-6230, fax 416-603-5472, e-mail jordan.feld@uhn.ca

Received for publication December 17, 2014. Accepted December 18, 2014

Can J Gastroenterol Hepatol Vol 29 No 1 January/February 2015 ©2015 Pulsus Group Inc. All rights reserved
EPIDEMIOLOGY OF HEPATITIS C IN CANADA

CHC remains a significant medical and economic burden in Canada (17-19). In the Canadian Health Measures Survey (20), Statistics Canada and the Public Health Agency of Canada reported an estimated anti-HCV prevalence of 0.5% (95% CI 0.3% to 0.9%) or approximately 138,600 (95% CI 55,800 to 221,300) anti-HCV-positive individuals in Canada. However, these figures are likely underestimates because the Canadian Health Measures Survey excluded several high-risk populations including incarcerated individuals, Aboriginals and PWIDs (20). In fact, a recent modelling study suggests that approximately 252,000 Canadians (uncertainty interval 178,000 to 315,000) were chronically infected in 2013 (18). The peak prevalence was estimated to have occurred in 2003, with approximately 260,000 infected individuals. It has been estimated that approximately 60% of HCV cases in Canada are among current or former PWIDs, 20% are among infected immigrants and 11% have received contaminated blood products (21). Of the nearly 8000 incident cases in Canada in 2007, approximately 80% likely occurred via sharing of injecting equipment, and most of the remainder among immigrants from endemic countries (21). There is wide variation in estimates of the number of HCV-infected individuals who remain undiagnosed. Modelling data from the Public Health Agency of Canada estimated that 79% of individuals were diagnosed in 2003 (21); however, the CMHS found that only 30% of anti-HCV-positive individuals were aware of their infection (20).

Genotype 1 infection is the most prevalent genotype in Canada, representing 65% of infected individuals (56% genotype 1a, 33% genotype 1b, and 10% with an unspecified subtype or mixed infection) (22). The genotype 1 subtype is of relevance for some of the new antiviral regimens due to differing efficacy between genotypes 1a and 1b. Genotypes 2 and 3 account for approximately 14% and 20% of infections in Canada, respectively, whereas genotypes 4, 5 and 6 are very rare (<1% of all infections) (22).

Although the overall prevalence of CHC is declining, complications of CHC are increasing due to aging of the infected population and progression of liver fibrosis (17-19). Modelling data suggest that by 2035, cases of decompensated cirrhosis, hepatocellular carcinoma (HCC) and liver-related mortality will increase by 80%, 205% and 160%, respectively, compared with 2013 levels (Figure 1) (18). Similarly, annual direct costs associated with CHC (excluding the cost of antiviral therapies) are expected to rise from an estimated $161 million in 2013 to $258 million at the peak in 2032 (18). Given the alarming estimates of future disease burden, more accurate information regarding the incidence and prevalence of CHC and its sequelae is required to inform health care planning and the allocation of resources. The identification of undiagnosed cases and the dissemination of effective antiviral therapies should be prioritized to reduce complications of this disease (23).

Recommendations:
1. A large population-based seroprevalence survey should be conducted to accurately define the prevalence of hepatitis C in Canada. The design of the study should include populations with an increased risk of hepatitis C, particularly PWIDs, incarcerated individuals and immigrants from endemic countries (Class 2a, Level C).
2. To reduce the future burden of HCV-related morbidity and mortality in Canada, strategies for case identification, harm reduction and disease management – including but not limited to antiviral therapy – should be developed and implemented (Class 2a, Level C).

ANTIVIRAL THERAPY

The primary objective of anti-HCV therapy is complete eradication of the virus, termed a sustained virological response (SVR). SVR has traditionally been defined as undetectable serum HCV RNA at least 24 weeks following the end of treatment (SVR24) (24); however, recent data suggest that earlier assessment at 12 weeks after treatment (SVR12) is sufficient to define this outcome (25). Once achieved, an SVR is considered to be a long-term cure of the virus because late relapses are rare (26, 27). SVR is associated with long-term health benefits including improved quality of life (28, 29), extrahepatic manifestations of HCV (eg, cryoglobulinemic vasculitis) (30), liver histology (31, 32), HCC incidence (33), liver-related morbidity and mortality (34-36), and all-cause mortality (33).
The landscape of antiviral treatment for hepatitis C is changing rapidly. Until recently, the standard therapy was the combination of PEG-IFN and ribavirin (RBV), usually administered for 48 weeks in patients with genotype 1, 4, 5 and 6, and 24 weeks in those with genotypes 2 and 3 (3). Dual therapy achieves SVR rates of 40% to 50% in patients with genotype 1 and approximately 80% in those with genotypes 2, 3, 5 and 6. Results for HCV genotype 4 are intermediate (3). In 2011, the first DAAs, boceprevir (BOC) and telaprevir (TVR), were approved for treatment of HCV genotype 1 in combination with PEG-IFN and RBV. These nonstructural (NS) 3A protease inhibitors (PIs) substantially increase rates of SVR in both treatment-naive and previously treated patients compared with dual therapy (37-41). However, they are associated with significant toxicity, complex regimens involving response-guided therapy (RGT), drug-drug interactions (DDIs), and low response rates in patients with cirrhosis and previous treatment failures. In addition, BOC and TVR required coadministration with PEG-IFN and RBV for 24 to 48 weeks, markedly increased the cost of therapy, and are associated with the emergence of resistance-associated variants (RAVs) in the majority of patients who fail treatment (3). The subsequent approval of DAAs with improved efficacy and tolerability, shorter treatment durations, and the option of PEG-IFN- and RBV-free therapy, represents a major advance in the field.

The treatment of CHC is complex and resource intensive. Contributing factors include the high prevalence of psychiatric comorbidities in HCV-infected individuals (eg, depression and addictions), multiple modes of drug administration, side effects, and the requirement for careful on-treatment monitoring of symptoms and laboratory tests. The most successful model to deliver comprehensive CHC care is via a multidisciplinary approach including experienced physicians, nurses and allied health professionals (eg, psychologists, psychiatrists, addiction specialists and social workers). Currently in Canada, a relatively small number of physicians treat CHC, leading in some cases to prolonged wait times for patients to be adequately evaluated and treated. These deficiencies in access to care are greater in rural and remote communities, despite a high HCV prevalence in many regions with limited health care capacity. Moreover, public funding for treatment nurses – who have represented a vital component of the management team – is not universally available. To achieve a meaningful reduction in the future burden of CHC, it will be vital to expand treatment capacity via additional training and funding of experienced personnel and enhanced access to publicly funded antiviral therapies (42). With the advent of all-oral antiviral regimens that have few contraindications, minimal toxicity and short treatment courses, the number of patients that can be treated should increase dramatically. However, team-based management will still be necessary to achieve this goal.

Recommendation:

3. Increased resources are necessary to improve hepatitis C treatment capacity in Canada, including the training of expert treaters and public funding for treatment nurses (Class 2a, Level C).

INDICATIONS AND CONTRAINDICATIONS TO ANTIVIRAL TREATMENT

All patients with CHC should be considered candidates for antiviral treatment. The decision of if and when to initiate therapy should be based on the balance between the perceived benefits and risks of treatment and the wishes of the individual patient. Factors to consider include the probability of SVR and the likelihood of progression to advanced liver disease without viral eradication, the presence of extrahepatic manifestations of CHC, the patient’s anticipated tolerability to treatment and the life expectancy of the patient. The prospect of new therapies with expected benefits over currently available treatments should also be considered. In light of these issues, prompt initiation of treatment should be considered in certain patient subgroups, especially those with advanced liver fibrosis (F3 or F4 according to the META VIR classification [bridging fibrosis or cirrhosis]) (43). These patients are at the highest risk of HCV-related complications including liver failure and HCC. Treatment of patients with mild to moderate fibrosis (F1 or F2) should also be considered because progression to more advanced stages is associated with a reduced likelihood of SVR. Moreover, viral eradication in patients at risk of infecting others (eg, PWIDs who continue to share injecting equipment) may reduce the incidence of new infections (44). The curative nature of HCV therapy means that those who achieve SVR before developing cirrhosis do not require long-term follow-up. There are additional benefits to SVR beyond liver disease prevention, including improved quality of life (28,29) and a reduction in all-cause mortality (33). Patients with extrahepatic manifestations of CHC including cryptogenic fibrosing cholangitis, porphyria cutanea tarda and glomerulonephritis should be considered for treatment regardless of their underlying liver disease severity because these conditions typically respond to viral eradication (30).

There are very few absolute contraindications to treatment with PEG-IFN- and RBV-based therapy. As postmarketing experience with these therapies has grown, many conditions previously regarded as absolute contraindications are now considered relative, and some may be present only temporarily (Table 2) (3). In most cases, treatment of these patients with PEG-IFN and RBV requires considerable expertise and, therefore, patients with relative contraindications should be treated in expert centres. Contraindications to the recently approved, all-oral regimens are distinctly uncommon.

Recommendations:

4. All patients with chronic HCV infection should be considered candidates for antiviral therapy (Class 1, Level A).
5. Antiviral treatment should be strongly considered in patients with evidence of liver fibrosis (Class 1, Level A).
6. Patients with extrahepatic manifestations of HCV should be considered for antiviral therapy (Class 1, Level A).

PRETREATMENT ASSESSMENT

Routine assessment

The routine assessment of HCV-infected patients should include risk factors for viral acquisition (eg, injection drug use, receipt of potentially contaminated blood products or tissues, or origin from a high-prevalence region), signs and symptoms of advanced liver disease (eg, jaundice, ascites, encephalopathy, portal hypertension-related hemorrhage) or extrahepatic manifestations of CHC, presence of cofactors that may accelerate disease progression (eg, alcohol use, obesity,
TABLE 3

Routine testing of patients with chronic hepatitis C virus (HCV)

<table>
<thead>
<tr>
<th>Category of Testing</th>
<th>Tests</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmation and characterization of chronic infection</td>
<td>HCV RNA</td>
<td>Confirms chronicity and baseline for treatment responses</td>
</tr>
<tr>
<td>Assessment of liver disease</td>
<td>HCV genotype and subtype</td>
<td>Directs choice of treatment regimen</td>
</tr>
<tr>
<td></td>
<td>Complete blood count</td>
<td>Thrombocytopenia may indicate cirrhosis and portal hypertension.</td>
</tr>
<tr>
<td></td>
<td>Alanine aminotransferase</td>
<td>Platelets needed for APRI calculation</td>
</tr>
<tr>
<td></td>
<td>Aspartate aminotransferase</td>
<td>Normal value does not preclude significant fibrosis</td>
</tr>
<tr>
<td></td>
<td>Gamma-glutamyl transferase</td>
<td>Aspartate aminotransferase needed for calculation of APRI</td>
</tr>
<tr>
<td></td>
<td>Alkaline phosphatase</td>
<td>Elevated bilirubin or INR, or hypoalbuminemia may indicate significant liver dysfunction</td>
</tr>
<tr>
<td></td>
<td>Bilirubin</td>
<td>Renal dysfunction increases ribavirin-related hemolytic anemia and may impact drug pharmacodynamics</td>
</tr>
<tr>
<td></td>
<td>INR (or prothrombin time)</td>
<td>May suggest cirrhosis, in which case, serves as a baseline for hepatocellular carcinoma surveillance</td>
</tr>
<tr>
<td></td>
<td>Albumin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creatinine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abdominal ultrasound</td>
<td></td>
</tr>
<tr>
<td>Viral coinfections</td>
<td>Immunoglobulin G anti-HAV</td>
<td>If negative, vaccinate against hepatitis A</td>
</tr>
<tr>
<td></td>
<td>HBsAg</td>
<td>Exclude hepatitis B coinfection</td>
</tr>
<tr>
<td></td>
<td>Hepatitis B surface antibody</td>
<td>If negative (and HBsAg-negative), vaccinate against hepatitis B</td>
</tr>
<tr>
<td></td>
<td>anti-HIV</td>
<td>Exclude HIV coinfection</td>
</tr>
<tr>
<td>Exclude other causes of liver disease†</td>
<td>Alpha-1-antitrypsin</td>
<td>Alpha-1-antitrypsin deficiency</td>
</tr>
<tr>
<td></td>
<td>Ceruloplasmin</td>
<td>Wilson disease.</td>
</tr>
<tr>
<td></td>
<td>Ferritin, serum iron, total iron-binding capacity</td>
<td>Iron overload</td>
</tr>
<tr>
<td></td>
<td>Antinuclear antibody</td>
<td>Autoimmune hepatitis</td>
</tr>
<tr>
<td></td>
<td>Smooth muscle antibody</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antimitochondrial antibody</td>
<td>Primary biliary cirrhosis</td>
</tr>
<tr>
<td></td>
<td>Immunoglobulin G</td>
<td>Often elevated in autoimmune hepatitis and cirrhosis of any cause</td>
</tr>
<tr>
<td></td>
<td>Immunoglobulin A</td>
<td>Often elevated in fatty liver and alcoholic liver disease</td>
</tr>
<tr>
<td></td>
<td>Immunoglobulin M</td>
<td>Often elevated in primary biliary cirrhosis</td>
</tr>
<tr>
<td>Contraindications to treatment</td>
<td>Serum or urine β-human chorionic gonadotropin</td>
<td>Exclude pregnancy in women of reproductive age</td>
</tr>
<tr>
<td></td>
<td>Electrocardiogram</td>
<td>If >50 years of age or history of cardiac disease</td>
</tr>
<tr>
<td></td>
<td>Thyroid-stimulating hormone</td>
<td>Exclude thyroid disease, which may be exacerbated by interferon</td>
</tr>
<tr>
<td></td>
<td>Fundoscopy</td>
<td>Exclude retinopathy in patients >50 years of age or with hypertension or diabetes mellitus if interferon is to be prescribed</td>
</tr>
</tbody>
</table>

Confirmed anti-HCV antibody positive; †Suggested tests only. Tailor testing to individual case. Anti-HAV Antibodies to hepatitis A virus; APRI Aspartate aminotransferase/platelet ratio index; HBsAg Hepatitis B surface antigen; INR International normalized ratio.

Virological testing

Approximately one-quarter of patients infected with HCV will clear the virus spontaneously (45). Therefore, chronic HCV infection must be confirmed in all anti-HCV-positive individuals using a sensitive HCV RNA test. HCV RNA detection and quantification using real-time polymerase chain reaction assays is standard due to their sensitivity, specificity, accuracy and broad dynamic range. Results should be expressed in IU/mL and normalized to the WHO international standard. Quantitative assays with a lower limit of detection of approximately 10 IU/mL to 15 IU/mL are recommended. HCV RNA test results should be available within a timely fashion (within seven days) to facilitate management decisions. The rapid identification of failing treatment will reduce patient exposure to costly therapies and potential toxicity, and likely limit the development of RAVs.

The HCV genotype should be assessed in all patients because it has important implications for the decision to initiate treatment and the choice of regimen. With PEG-IFN and RBV therapy, knowledge of only the main genotype (1 to 6) was necessary. However, knowledge of the subtype is now critical, particularly for genotype 1, because of the differing genetic barriers to resistance of HCV subtypes 1a and 1b for many classes of DAAs (46,47). For some DAAs, additional testing (eg, for the Q80K polymorphism [see below]) and/or alternative treatment based on subtype (eg, the use of RBV) may be required.

Recommendations:

7. HCV RNA, genotype, and subtype testing (ie, 1a versus 1b) are essential to the management of patients with chronic hepatitis C (Class 1, Level A).

8. HCV RNA testing should be performed using a sensitive quantitative assay (lower limit of detection of ≤10 IU/mL to 15 IU/mL) with a broad dynamic range. Standardized results should be expressed in IU/mL and be available within a maximum of seven days to facilitate management decisions (Class 1, Level A).

Assessment of liver disease severity

Assessment of the severity of hepatic fibrosis is vital for determining the prognosis of HCV-infected patients and the necessity of antiviral treatment. Identification of patients with cirrhosis is particularly important due to their increased risk of hepatic complications, reduced...
Utility of interleukin 28B testing

Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) near the interleukin 28B (IL28B) gene on chromosome 19 that are strongly associated with both spontaneous and treatment-induced HCV clearance (67-70). Patients with the favourable CC genotype at rs12979860 have a more than twofold likelihood of spontaneous HCV clearance compared with heterozygotes (CT) and homozygotes (TT) (67). The CC genotype is also associated with an approximately twofold increase in SVR to PEG-IFN and RBV therapy compared with the unfavourable SNPs in patients with HCV genotype 1 (68,70). The relevance in genotypes 2 and 3 and in treatment-experienced patients is less clear. There is marked ethnic variation in the prevalence of the IL28B genotypes.

Recommendations:

9. Liver fibrosis assessment is vital to the management of patients with CHC (Class 1, Level A).
10. Acceptable methods of fibrosis assessment include liver biopsy, TE (FibroScan), and serum biomarker panels (eg, FibroTest), either alone or in combination. All jurisdictions should provide access to at least one accurate, noninvasive method to assess fibrosis (Class 1, Level A).
11. Alternatively, cirrhosis can be confidently diagnosed in some patients with clear clinical or radiographic evidence (Class 2a, Level C).
consider the patient’s wishes, the urgency of therapy, the severity of liver disease, the anticipated tolerability of PEG-IFN, the likelihood of SVR and the expected timeline for access to IFN-free regimens.

TREATMENT-NAIVE PATIENTS WITH HCV GENOTYPE 1 (TABLE 4)

PEG-IFN-free regimens

SOF/LDV: The nucleotide polymerase inhibitor SOF (400 mg) has been combined with the NS5A inhibitor LDV (90 mg) in a single tablet regimen (SOF/LDV) administered once daily. This combination was evaluated in treatment-naive patients in the open-label ION-1 (8) and ION-3 (10) phase 3 trials with a primary end point of SVR12. In the ION-1 study, which included patients with compensated cirrhosis (16%), participants were randomly assigned to 12 or 24 weeks of SOF/LDV with or without weight-based RBV (8). Among patients who received SOF/LDV for 12 weeks, SVR12 rates were 97% (211 of 217) and 99% (211 of 214) in those who received and did not receive RBV, respectively. In the 24-week treatment arms, SVR12 rates were 99% (215 of 217) in RBV-treated patients compared with 98% (212 of 217) in those who received SOF/LDV alone. There were no statistically significant differences between treatment arms or pretreatment characteristics that were predictive of response. Among the 136 cirrhotic patients, SVR12 rates ranged from 94% to 100%, with no differences between 12 and 24 weeks or with or without RBV. The IL28B genotype was not predictive of response; SVR12 rates ranged from 97% to 99% among patients with the unfavourable non-CC genotype. Only one patient experienced virological breakthrough on therapy and two patients relapsed. All three of these patients had NS5A resistance, but no SOF resistance was detected by deep sequencing. Although the majority of patients complained of at least one adverse event, 93% were mild to moderate in severity with the most common being fatigue, headache, insomnia and nausea. Adverse events were more common in patients randomized to receive RBV. No patient receiving SOF/LDV alone had a haemoglobin concentration <100 g/L.

In the ION-3 study (10), treatment-naive, noncirrhotic patients with HCV genotype 1 were randomly assigned to eight weeks of SOF/LDV with or without weight-based RBV, or SOF/LDV alone for 12 weeks. Among the 215 patients randomly assigned to SOF/LDV for eight weeks, 202 (94%) achieved SVR12, compared with 201 of 216 (93%) who received SOF/LDV/RBV for eight weeks, and 206 of 216 (95%) who received SOF/LDV for 12 weeks. The relapse rates were 5% (SOF/LDV) and 4% (SOF/LDV/RBV) in the eight-week treatment arms and 1% in the 12-week treatment arm. Although the 12-week regimen had a lower relapse rate, treating all patients for an additional four weeks would lead to overtreatment of the majority of individuals. Therefore, a post hoc analysis of baseline viral load was conducted to identify patients in whom an eight-week regimen would suffice (74). In this analysis, patients with an HCV RNA level <6 million IU/mL had a 2% relapse rate in both the eight-week (two of 123) and 12-week (two of 131) SOF/LDV treatment arms, and SVR12 rates of 97% (119 of 123) and 96% (126 of 131), respectively. However, in patients with a baseline viral load ≥6 million IU/mL, those treated for only eight weeks with SOF/LDV had a 10% (nine of 92) relapse rate versus only 1% (one of 85) if treated for 12 weeks. Corresponding SVR12 rates were 90% (83 of 92) and 94% (80 of 85), respectively. Based on these findings, Health Canada and the United States Food and Drug Administration (FDA) have recommended an eight-week regimen of SOF/LDV in treatment-naive, noncirrhotic patients with baseline HCV RNA <6 million IU/mL and 12 weeks in patients with a higher viral load (74).

In addition to baseline viral load, the impact of baseline RAVs on treatment response was examined (10). Although 15 of 23 relapsers (65%) to SOF/LDV had NS5A-resistant variants detected at the time of relapse (present at baseline in nine patients), SOF resistance was not identified. Among 116 patients (18%) with NS5A resistance at baseline, 90% achieved SVR12, suggesting a minimal impact of baseline NS5A RAVs on treatment response with SOF/LDV.

Recommendations:

14. In noncirrhotic, treatment-naive patients with HCV genotype 1, SOF/LDV should be given for eight weeks (Class 1, Level B).
15. In noncirrhotic, treatment-naive patients with genotype 1 and baseline HCV RNA ≥6 million IU/mL, extension of SOF/LDV therapy to 12 weeks can be considered (Class 1, Level C).
16. In cirrhotic, treatment-naive patients with genotype 1, SOF/LDV should be given for 12 weeks (Class 1, Level B).

PTV₃/OBV/DSV ± RBV: The PI PTV is given with low-dose ritonavir (PTV₃) to permit once-daily dosing. PTV₉ (150 mg/100 mg) and the NS5A inhibitor OBV (25 mg) are coformulated in a single tablet taken as two tablets once daily. This tablet is combined with the non-nucleoside polymerase inhibitor DSV (250 mg) taken as one tablet twice daily. Placebo or the combination of the three DAAs plus ritonavir (referred to as the ‘3D’ regimen) and weight-based RBV was given for 12 weeks to treatment-naive, noncirrhotic patients with HCV genotype 1 in the phase 3 SAPPHERINE-I trial (15). Patients randomly assigned to placebo subsequently received active treatment. Of 473 patients who started active therapy, 455 (96%) achieved SVR12, 90% achieved SVR12, suggesting a minimal impact of baseline NS5A RAVs on treatment response with SOF/LDV.

TABLE 4 Treatment-naive patients with hepatitis C virus (HCV) genotype 1

<table>
<thead>
<tr>
<th>Population</th>
<th>Recommended</th>
<th>Alternative (IFN-free)</th>
<th>Alternative (IFN-containing)</th>
<th>Not recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype 1a, noncirrhotic</td>
<td>SOF/LDV × 8–12 weeks*</td>
<td>SOF/SIM × 12 weeks</td>
<td>SOF/PEG/RBV × 12 weeks</td>
<td>PEG/RBV</td>
</tr>
<tr>
<td>Genotype 1a, cirrhotic</td>
<td>SOF/LDV × 12 weeks</td>
<td>PTV₃/OBV/DSV/RBV × 12 weeks</td>
<td>SIM/PEG/RBV × 24 weeks (if Q80K–)</td>
<td>PEG/RBV</td>
</tr>
<tr>
<td>Genotype 1b, noncirrhotic</td>
<td>SOF/LDV × 8–12 weeks*</td>
<td>SOF/SIM × 12 weeks</td>
<td>SOF/PEG/RBV × 12 weeks</td>
<td>PEG/RBV</td>
</tr>
<tr>
<td>Genotype 1b, cirrhotic</td>
<td>SOF/LDV × 12 weeks</td>
<td>PTV₃/OBV/DSV/RBV × 12 weeks</td>
<td>SIM/PEG/RBV × 24–48 weeks (if Q80K–)</td>
<td>PEG/RBV</td>
</tr>
<tr>
<td>Genotype 1b, cirrhotic</td>
<td>SOF/LDV × 12 weeks</td>
<td>PTV₃/OBV/DSV/RBV × 12 weeks</td>
<td>SIM/PEG/RBV × 24 weeks (if Q80K+)</td>
<td>PEG/RBV</td>
</tr>
</tbody>
</table>

*In noncirrhotic, treatment-naive patients with HCV genotype 1a or 1b, treat with sofosbuvir/ledipasvir (SOF 400 mg/LDV 90 mg) once daily (one tablet) for eight weeks. Consider 12 weeks of treatment if baseline HCV RNA ≥6 million IU/mL. + Positive; – Negative; BOC Boceprevir; DSV Dasabuvir (250 mg) one tablet twice daily; IFN Interferon; PEG Peginterferon alfa-2a (180 µg subcutaneously/week) or peginterferon alfa-2b (1.5 µg/kg/week); PTV₃/OBV Paritaprevir (150 mg)/ritonavir (100 mg)/ombitasvir (25 mg) two tablets once daily; Q80K Simeprevir-associated resistance variant at position 90; RBV Ribavirin (weight-based dosing: 1000 mg daily if ≤75 kg; 1200 mg daily if ≥75 kg); SIM Simeprevir (150 mg once daily); SOF Sofosbuvir (400 mg once daily); TVR Telaprevir.

Can J Gastroenterol Hepatol Vol 29 No 1 January/February 2015
not differ between patients with HCV genotype 1a (95% [307 of 322]) or 1b (98% [148 of 151]). The only baseline factor associated with response was body mass index (BMI). Obese patients (BMI ≥30 kg/m²) had an SVR12 rate of 91.5% compared with 97% in patients with a lower BMI. There was no difference in response according to IL28B genotype, fibrosis stage, baseline HCV RNA level, ethnicity or RBV dose modification.

Safety of the regimen was evaluated by comparing with patients randomly assigned to placebo (15). Adverse events were more common in those on active treatment (88%); however, 73% of placebo-treated patients also experienced at least one adverse event. Severe adverse events (2.1%), in particular those requiring drug discontinuation (<1%), were rare. The most common side effects were fatigue and headache, but were no more frequent with active treatment than placebo. Nausea, pruritus, insomnia, diarrhea and asthenia were reported more frequently in patients on active treatment. Total bilirubin elevations were seen in 2.8% of patients on this regimen, likely due to RBV-related hemolysis and inhibition of the bilirubin transporters OATP1B1 and OATP1B3 by PTV_R. No episodes of hepatotoxicity were reported. Grade 2 anemia (hemoglobin 80 g/L to 100 g/L) was reported in 5.8% of patients treated with this regimen including RBV. In 5.5% of patients, the RBV dose was modified due to adverse events, but no impact on the rate of SVR12 was observed in these patients.

The TURQUOISE-II phase 3 trial evaluated the PTV_R/OBV/DSV plus RBV regimen (12 versus 24 weeks) in treatment-naive and treatment-experienced patients with compensated cirrhosis (13). Among treatment-naive patients, the rates of SVR12 were similar between the 12- and 24-week arms (94% [81 of 86] versus 95% [70 of 74]) and by genotype subtype (genotype 1a: 12 versus 24 weeks: 92% [59 of 64] versus 93% [52 of 56]; and genotype 1b: 100% in both the 12-week [22 of 22] and 24-week [18 of 18] groups). SVR12 rates among previously treated patients from TURQUOISE-II are discussed below.

To evaluate the importance of RBV administration with PTV_R/ OBV/DSV, the PEARL-III and PEARL-IV phase 3 trials were conducted in treatment-naive, noncirrhotic patients with genotypes 1b and 1a, respectively (75). In PEARL-III, patients with HCV genotype 1b were randomly assigned to receive PTV_R/OBV/DSV alone (n=209) or with RBV (n=210) for 12 weeks. Only three of 419 patients in the trial failed treatment; the SVR12 rate was 99% in both groups. In the PEARL-IV trial, of 205 patients with HCV genotype 1a randomly assigned to receive PTV_R/OBV/DSV alone for 12 weeks, 185 (90%) achieved SVR12; this rate was significantly lower than that observed in patients treated with PTV_R/OBV/DSV plus RBV (97% [97 of 100]), emphasizing the importance of RBV coadministration when this regimen is prescribed to patients with HCV genotype 1a (75).

Recommendations:

17. In treatment-naive patients with HCV genotype 1a infection, with or without cirrhosis, and for those with genotype 1b infection and cirrhosis, coformulated PTV_R/OBV/DSV should be given with weight-based RBV for 12 weeks (Class 1, Level A).

18. In noncirrhotic, treatment-naive patients with genotype 1b infection, coformulated PTV_R/OBV/DSV should be given without RBV for 12 weeks (Class 1, Level A).

PEG-IFN-containing regimens

Given the efficacy and markedly improved tolerability of SOF or SIM combined with PEG-IFN and RBV compared with TVR- or BOC-based regimens, the latter first-generation PIs should no longer be used except in rare circumstances where treatment is urgent and access to newer agents is not available. The use of BOC and TVR is reviewed in the 2012 version of the present guidelines (3).

SOF, PEG-IFN and RBV: SOF (400 mg daily) was combined with PEG-IFN and RBV for 12 weeks in patients with HCV genotypes 1, 4, 5 and 6 in the uncontrolled, open-label, phase 3 NEUTRINO trial (5). Among patients with HCV genotype 1, the SVR12 rate was 89% (261 of 292). Although a higher proportion of patients with genotype 1a achieved SVR12 than those with genotype 1b (92% [206 of 225] versus 82% [54 of 66]), this difference was not statistically significant. In multivariate analysis, the presence of cirrhosis and a non-CC IL28B genotype were the only predictors of virological failure. The SVR12 rate was 92% (252 of 273) in noncirrhotic patients versus 80% (43 of 54) in patients with compensated cirrhosis. The SVR12 rate was 98% (93 of 95) in patients with the IL28B CC genotype, compared with 87% (202 of 232) in those with a non-CC genotype. Although the side effect profile appeared similar to that of PEG-IFN and RBV dual therapy, the uncontrolled nature of the study precluded a clear evaluation of safety. However, only 2% of patients discontinued treatment due to an adverse event. Among the 28 patients who relapsed (9% of the cohort), resistance to SOF was not detected by deep sequencing (5).

Recommendation:

19. In treatment-naive patients with HCV genotype 1a or 1b infection, with or without cirrhosis, SOF (400 mg daily) and SIM (150 mg daily) should be given for 12 weeks without RBV (Class 1, Level B).

SIM, PEG-IFN and RBV: In the QUEST-1 and QUEST-2 phase 3 trials (6,7), conducted in North America and Europe, respectively, the second-generation PI SIM (150 mg once daily) was combined with PEG-IFN and weight-based RBV for 12 weeks followed by an additional 12 or 36 weeks of PEG-IFN plus RBV and compared with PEG-IFN plus RBV for 48 weeks in patients with HCV genotype 1. Patients randomly assigned to triple therapy who had HCV RNA <25 IU/mL at week 4 and undetectable HCV RNA at week 12 continued PEG-IFN plus RBV for 12 additional weeks and then stopped all treatment. Patients who did not meet these early response criteria continued PEG-IFN and RBV for an additional 36 weeks (ie, 48 weeks total). In pooled data from these trials, the SVR12 rate in the SIM/PEG-IFN/ RBV groups was 80% (419 of 521), significantly higher than in
patients receiving PEG-IFN and RBV alone (50% [132 of 264]) (6,7). In total, 88% (459 of 521) of patients in the SIM/PEG-IFN/RBV groups qualified for shortened therapy and 88% (405 of 459) of these patients achieved SVR12. In the two trials, of the 12% (62 of 521) of patients who did not qualify for shortened therapy, the SVR12 rate was 32% despite up to 36 weeks of additional PEG-IFN and RBV. SVR12 rates differed according to baseline fibrosis level, decreasing from 84% (317 of 378) in patients with F0 to F2 fibrosis to 60% (29 of 48) in those with cirrhosis. The IL28B genotype was also important, with SVR12 rates of 95% (144 of 152) in CC patients treated with triple therapy compared with 80% (63 of 79) with PEG-IFN and RBV alone, and 75% (275 of 369) in patients with a non-CC genotype who received triple therapy compared with 37% (69 of 185) in the control arm.

The most important predictor of response was the presence of the Q80K polymorphism at baseline (described above). In pooled data from these trials (6,7), the SVR12 rate with SIM-based triple therapy was 58% (49 of 84) in patients with genotype 1a and Q80K, no different than that seen in the PEG-IFN and RBV control arm (52% [23 of 44]). In contrast, among patients with genotype 1a infection without Q80K, the SVR12 rate was 84% (138 of 165), similar to that seen in patients with genotype 1b infection (85% [228 of 267]) and significantly higher than found in the control arms (43% [36 of 83] in genotype 1a without Q80K and 53% [70 of 133] in genotype 1b). In these trials, the Q80K polymorphism was present at baseline in 34% of patients with genotype 1a infection and available sequencing data, but in only one of 400 patients with genotype 1b (6,7). Rates of Q80K positivity among patients with HCV genotype 1a in Canada have been reported to be as high as 47% (79).

SIM was well tolerated in these trials (6,7). In pooled data across the SIM study program (80), the main adverse events seen more frequently in SIM-treated patients were rash (mostly mild) seen in 23% of patients (versus 17% of controls) and photosensitivity in 3.3% (versus 0.5% of controls). Total bilirubin elevation, which is due to inhibition of biliary transporters and RBV-related hemolytic anemia, was observed in 7.9% of patients (versus 2.8% of controls). Notably, the incidence of anemia was similar among patients treated with SIM-based triple therapy versus PEG-IFN and RBV alone.

Recommendations:

21. In patients with HCV genotype 1b infection and patients with genotype 1a infection without the Q80K polymorphism, SIM (150 mg daily) should be given with PEG-IFN plus weight-based RBV for 12 weeks following by an additional 12 weeks of PEG-IFN plus RBV (Class 1, Level A).

22. Patients with genotype 1a infection must be tested for the Q80K polymorphism before starting therapy with SIM, PEG-IFN and RBV. Patients with the Q80K polymorphism should be treated with an alternative regimen (Class 1, Level A).

23. RGT should not be used with SIM, PEG-IFN and RBV. Patients who have HCV RNA >25 IU/mL at week 4 or detectable HCV RNA at week 12 should stop all therapy given the low probability of SVR and the need for prolonged exposure to PEG-IFN and RBV (Class 2b, Level C).

TREATMENT-EXPERIENCED PATIENTS WITH HCV GENOTYPE 1 (TABLE 5)

PEG-IFN-free regimens

Patients who have failed IFN-based therapy should be categorized as relapsers (undetectable HCV RNA during treatment with reappearance of HCV RNA within six months of stopping therapy), partial responders (decline of at least 2 log10 IU/mL in HCV RNA without ever achieving undetectable HCV RNA during therapy), or null responders (<2 log10 IU/mL decline in HCV RNA during therapy; or breakthrough [increase by >1 log10 IU/mL in HCV RNA above nadir despite ongoing antiviral therapy]) (3). Patients with an unknown previous response should be managed as null responders. As in treatment-naïve patients, all previously treated patients with HCV genotype 1 would benefit from all-oral DAA regimens rather than those containing IFN because these patients, with the exception of relapsers, have demonstrated poor IFN responsiveness.

SOF/LDV: The single tablet regimen of SOF/LDV was evaluated in treatment-experienced patients in the ION-2 phase 3 trial (9). The study included relapers (56%) and nonresponders (44%), including patients who had failed PEG-IFN/RBV dual therapy (48%) or in combination with a PI (52%). Patients were randomly assigned to receive 12 or 24 weeks of treatment with or without weight-based RBV. The SVR12 rate was 94% (102 of 109) in patients who received 12 weeks of SOF/LDV and 96% (107 of 111) in those who also received RBV. The SVR12 rate in patients who received 24 weeks of SOF/LDV therapy was 99% (218 of 220 overall) whether the patients also received RBV.

Virological relapse occurred in 4% to 6% of patients treated for 12 weeks, but in none treated for 24 weeks. The SVR12 rate in patients with compensated cirrhosis (20% of each treatment arm) treated for 12 weeks with SOF/LDV alone was 86% (19 of 22) versus 82% (18 of 22) in those who also received RBV. In cirrhotic patients treated for 24 weeks (with or without RBV), the SVR12 rate was 100% (44 of 44). No baseline or on-treatment predictors of relapse were identified in patients with cirrhosis. There were no differences in SVR12 rates according to receipt of RBV, previous antiviral regimen (PEG-IFN/RBV versus PEG-IFN/RBV plus a PI), or previous treatment response (relapse versus nonresponse). Among the 62 patients (14%) with detectable NS5A resistance at baseline, 55 (89%) achieved an SVR12. All 11 patients who relapsed had detectable NS5A resistance at the time of relapse, but SOF-associated resistance was not detected. Among patients previously treated with a PI-containing regimen, 71% had NS3/4A resistance at baseline and 98% of these patients achieved an SVR12 (9). Tolerability of SOF/LDV was similar to that observed in the ION-1 and ION-3 studies (see above) (8,10); more adverse events were reported in patients treated with RBV.

Based on the higher rates of response observed in the ION-2 trial among previous treatment failure patients with compensated cirrhosis treated for 24 versus 12 weeks, Health Canada and the FDA have recommended a 24-week regimen of SOF/LDV in this patient subgroup. However, a subsequent and significantly larger randomized trial from France (the SIRIUS trial) (81) suggested that a 12-week regimen of SOF/LDV plus weight-based RBV is as effective as a 24-week SOF/LDV regimen in patients with cirrhosis who had failed both PEG-IFN/RBV and triple therapy including a PI. Specifically, 74 of 77 patients (96%) randomly assigned to SOF/LDV/RBV for 12 weeks had an SVR12 (4% relapse rate) compared with 75 of 77 patients (97%) randomly assigned to SOF/LDV alone for 24 weeks (3% relapse rate). Furthermore, in a pooled analysis of data from the SIRIUS trial and six other phase 2 and 3 studies that included 352 treatment-experienced patients with cirrhosis (82), 12 weeks of SOF/LDV/RBV resulted in a similar SVR12 rate to 24 weeks of SOF/LDV alone (96% versus 98%).

Recommendations:

24. In noncirrhotic patients with HCV genotype 1 who have failed previous therapy with PEG-IFN and RBV, with or without a PI, SOF/LDV without RBV should be given for 12 weeks (Class 1, Level B).

25. In cirrhotic patients with genotype 1 who have failed previous therapy with PEG-IFN and RBV, with or without a PI, SOF/LDV and weight-based RBV should be given for 12 weeks (Class 1, Level A).

PTV_g/OBV/DSV and RBV: The combination of PTV_g/OBV/DSV with weight-based RBV was evaluated in treatment-experienced patients without cirrhosis in the SAPPHIRE-II phase 3 trial (14). Among 297 patients randomly assigned to PTV_g/OBV/DSV plus RBV regimen for 12 weeks, 286 (96%) achieved SVR12. No pretreatment predictors of response were identified. The SVR12 rate was...
similar between patients with genotype 1a (96% [166 of 173]) and 1b (97% [119 of 123]), and did not differ between relapsers (95% [82 of 86]), partial responders (100% [65 of 65]) and null responders (95% [119 of 123]), and did not differ between relapsers (95% [82 of 86]), partial responders (100% [65 of 65]) and null responders (95% [119 of 123]).

In the TURQUOISE-II trial (13), PTV R/OBV/DSV plus RBV regimen for 12 or 24 weeks was evaluated in 380 patients with compensated cirrhosis, of whom 58% had previously failed PEG-IFN and RBV therapy. Among patients with genotype 1b, the SVR12 rate was 99% (67 of 68) with 12 weeks of therapy and 100% (51 of 51) with 24 weeks. Response rates did not differ according to treatment duration or receipt of PEG or previous treatment history. In patients with genotype 1a infection, SVR12 rates were 89% (124 of 140) with 12 weeks and 94% (114 of 121) with 24 weeks of therapy; this difference was not statistically significant. There was no difference between the 12- and 24-week study arms among treatment-naive, cirrhotic patients with genotype 1a (12 versus 24 weeks: 92% [59 of 64] versus 93% [52 of 56]), previous relapsers (93% [14 of 15] versus 100% [13 of 13]) or partial responders (100% [11 of 11] versus 100% [10 of 10]). However, among null responders with genotype 1a, the 24-week arm was superior to 12 weeks of treatment (93% [39 of 42] versus 80% [40 of 50]) (13).

To determine the importance of RBV in noncirrhotic, treatment-experienced patients with HCV genotype 1b infection, the PEARL-II study randomly assigned patients to receive PTV/R/DSV with or without RBV for 12 weeks (83). All 91 patients (100%) who received PTV/R/DSV alone achieved SVR12 compared with 97% (85 of 88) randomly assigned to also receive RBV.

There is expected to be overlap between RA Vs due to PI-based therapies. Because the PTV/R/DSV regimen contains a PI and other regimens with documented activity in these patients are available (ie, SOF/LDV) (9), this regimen should not be used in patients who have failed another PI (eg, TVR, BOC or SIM).

Recomendations:

26. In noncirrhotic, treatment-experienced patients with HCV genotype 1a infection, coformulated PTV/R/DSV should be given with weight-based RBV for 12 weeks (Class 1, Level A).

27. In noncirrhotic, treatment-experienced patients with genotype 1b infection, coformulated PTV/R/DSV should be given without RBV for 12 weeks (Class 1, Level A).

28. In cirrhotic patients with genotype 1a infection and a history of previous null response to PEG-IFN and RBV, coformulated PTV/R/DSV should be given with RBV for 24 weeks (Class 1, Level B). It is recommended that treatment duration be 24 weeks.

29. In patients who have failed therapy with another PI, coformulated PTV/R/DSV should not be given due to the potential for cross-resistance with PTV (Class 2b, Level C).

SOF and SIM: As previously described, SOF (400 mg daily) was combined with the PI SIM (150 mg daily) with or without RBV for 12 or 24 weeks in the phase 2 COSMOS study (76). Cohort 1 included 80 null responders with mild fibrosis (F0 to F2) and cohort 2 included 47 null responders (plus 40 treatment-naive patients) with advanced fibrosis (F3 and F4). Overall, 116 of 127 null responders (91%) achieved an SVR12, not significantly different from that observed among treatment-naive subjects (95% [38 of 40]). SVR12 rates among null responders were similar regardless of fibrosis severity (90% [72 of 80] versus F3: 96% [23 of 24] versus F4: 91% [21 of 23]), treatment duration or receipt of RBV. Given the expected cross-resistance between other PIs and SIM, patients who previously failed treatment with these agents were excluded from the study (76). Because of the small sample size of this trial and the availability of other effective and less expensive IFN-free regimens, this combination should be considered as a second line option until further data emerge.

Recomendations:

30. In patients with HCV genotype 1a or 1b infection, with or without cirrhosis, who have failed previous therapy with PEG-IFN and RBV, SOF (400 mg daily) and SIM (150 mg daily) should be given without RBV for 12 weeks (Class 1, Level B). It is recommended that treatment duration be 12 weeks.

31. The combination of SOF and SIM should not be used in patients who have failed therapy with another PI (Class 2b, Level C).

PEG-IFN-containing regimens

Given the efficacy and markedly improved safety and tolerability of SOF and SIM combined with PEG-IFN and RBV compared to TVR or BOC-based regimens, these first generation PIs should no longer be used except in rare circumstances (see above).
SOF, PEG-IFN and RBV: Experience with the use of SOF (400 mg) in combination with PEG-IFN and RBV in patients who have failed IFN-based therapy is limited. Nevertheless, Health Canada and the United States FDA have approved this regimen for treatment-experienced patients. Based on a modelling approach, the FDA projected an SVR12 rate of 78% in PEG-IFN and RBV treatment failures if retreated with SOF plus PEG/RBV for 12 weeks. In the NEUTRINO phase 3 trial of treatment-naive patients (3), 52 patients with HCV genotype 1 had characteristics typical of the treatment-experienced population (ie, advanced fibrosis [F3 and F4], a non-CC IL28B genotype and high baseline viral load [≥800,000 IU/mL]). Thirty-seven of these patients (71%) achieved SVR12 with 12 weeks of SOF/PEG/RBV (74). Although this regimen is also under test in patients who have failed therapy with a PI, the absence of cross-resistance between the PIs and SOF suggests that these patients should respond similarly to those who failed treatment with PEG-IFN/RBV alone.

Recommendation:
32. In patients with HCV genotype 1a or 1b infection, with or without cirrhosis, who have failed previous therapy with PEG-IFN and RBV with or without a PI, SOF (400 mg daily) should be given with PEG-IFN plus weight-based RBV for 12 weeks (Class 2b, Level C).

SIM, PEG-IFN and RBV: SIM (150 mg daily) has been evaluated in combination with PEG-IFN and weight-based RBV for 12 weeks followed by an additional 12 to 36 weeks of PEG-IFN and RBV in patients with HCV genotype 1 who failed IFN-based therapy in two trials. The phase 3 PROMISE study (84) included relapers, whereas the phase 2b ASPIRE trial (85) also included partial and null responders. In the PROMISE trial (84), an RGT approach identical to that used in treatment-naive patients was evaluated (see above). Treatment with triple therapy was more effective than PEG-IFN and RBV dual therapy (SVR12: 79% [226 of 260] versus 36% [48 of 133]) in these relapers. The majority of SIM-treated patients (93% [241 of 260]) were eligible to shorten treatment from 48 to 24 weeks and 83% of these patients (220 of 241) achieved SVR12. In patients with undetectable HCV RNA at week 4 (77% of the cohort), the SVR12 rate was 87% (173 of 200), compared with 60% in those with HCV RNA <25 IU/mL but detectable at week 4. Among patients who did not qualify for shortened therapy, the SVR12 rate was 40% (six of 15) despite 48 weeks of treatment. Of the 39 patients with compensated cirrhosis randomly assigned to triple therapy, 29 (74%) achieved SVR12 compared with five of 19 (26%) in the control arm. As reported in treatment-naive subjects from the QUEST-1 and QUEST-2 trials (6,7), patients with HCV genotype 1a and the Q80K mutation at baseline did not benefit from SIM treatment (SVR12 rates in the simprevir and placebo arms: 47% [14 of 30] versus 30% [six of 20], respectively). RAVs similar to those selected by TVR and BOC emerged in most patients (90%) who did not achieve SVR12 in the SIM arm (84).

In the phase 2b ASPIRE trial (85), 462 patients who failed PEG-IFN/RBV therapy (40% relapers, 35% partial responders and 25% null responders) were randomly assigned to receive SIM (100 mg or 150 mg or placebo) for 12, 24 or 48 weeks in combination with PEG-IFN and RBV for 48 weeks. In patients treated with SIM 150 mg daily for 12 weeks, SVR24 rates were 77% (20 of 26) in relapers, 65% (15 of 23) in partial responders and 44% (eight of 18) in null responders; all superior to rates in the control arm (37%, 19% and 9%, respectively). Among null responders with cirrhosis (across all SIM 150 mg arms), 31% (four of 13) achieved SVR24 with SIM compared with neither of two patients treated with PEG-IFN and RBV.

Recommendations:
33. In patients with HCV genotype 1b or genotype 1a infection without the Q80K polymorphism who relapsed to PEG-IFN and RBV, SIM (150 mg daily) should be given with PEG-IFN and weight-based RBV for 12 weeks followed by PEG-IFN plus RBV for an additional 12 weeks. All therapy should be discontinued in patients who have HCV RNA >25 IU/mL at week 4 or detectable HCV RNA at week 12 (Class 1, Level A).

34. In patients with previous partial or null response, alternative regimens should be considered given the low probability of SVR and the need for prolonged exposure to PEG-IFN and RBV with this regimen (Class 2b, Level B).

PATIENTS WITH HCV GENOTYPE 2 (TABLE 6)

SOF and RBV

In the phase 3 FISSION trial (5), SOF (400 mg daily) was administered in combination with weight-based RBV for 12 weeks to treatment-naive patients with HCV genotype 2. Patients randomly assigned to the control arm received a 24-week course of PEG-IFN and RBV (800 mg daily). Patients with cirrhosis accounted for approximately 20% of the study population. The SVR12 rates in the SOF/RBV and PEG-IFN/RBV arms were 97% (68 of 70) and 78% (52 of 67), respectively. The incidence of adverse events was consistently lower among patients who received SOF/RBV, particularly the influenza-like symptoms and depression characteristic of IFN-based therapy. In the phase 3 VALENCE trial (12), 32 treatment-naive patients with HCV genotype 2 received a 12-week regimen of SOF and weight-based RBV. As observed in the FISSION study (5), all but one of these patients (97%) achieved an SVR12. The response rate did not differ between cirrhotic (100% [two of two]) and noncirrhotic patients (97% [29 of 30]). In the phase 3 POSITRON trial (11), 143 IFN-ineligible patients with HCV genotype 2 were randomly assigned to receive SOF and weight-based RBV for 12 weeks or placebo. The majority of patients in this trial had contraindications to or refused IFN therapy; only 7% had previously

TABLE 6

Patients with hepatitis C virus genotype 2

<table>
<thead>
<tr>
<th>Population</th>
<th>Recommended</th>
<th>Alternative (IFN-free)</th>
<th>Alternative (IFN-containing)</th>
<th>Not recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment-naive</td>
<td>SOF/RBV × 12 weeks</td>
<td>None</td>
<td>SOF/PEG/RBV × 12 weeks</td>
<td>PEG/RBV/PI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PEG/RBV × 24 weeks*</td>
<td>SOF/LDV</td>
</tr>
<tr>
<td>Treatment-experienced, noncirrhotic</td>
<td>SOF/RBV × 12 weeks</td>
<td>None</td>
<td>SOF/PEG/RBV × 12 weeks</td>
<td>PTVR/OBV/DSV ± RBV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PEG/RBV/PI</td>
<td>SOF/SIM</td>
</tr>
<tr>
<td>Treatment-experienced, cirrhotic</td>
<td>SOF/PEG/RBV × 12 weeks</td>
<td>None</td>
<td>SOF/PEG/RBV × 12 weeks</td>
<td>PEG/RBV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PEG/RBV/PI</td>
<td>SOF/LDV</td>
</tr>
</tbody>
</table>

*Clinically inferior regimen. DSV Dasabuvir (250 mg) one tablet twice daily; IFN Interferon; PEG Peginterferon alfa-2a (180 µg subcutaneously/week) or peginterferon alfa-2b (1.5 µg/kg/week); PI Protease inhibitor (eg, boceprevir, telaprevir or simeprevir); PTVR/OBV Paritaprevir 150 mg/ritonavir 100 mg/ombitasvir (25 mg) two tablets once daily; RBV Ribavirin (weight-based dosing [1000 mg daily if ≤75 kg; 1200 mg daily if >75 kg] if combined with sofosbuvir (SOF); 800 mg daily if used in dual therapy with PEG); SIM Simeprevir (150 mg daily); SOF: 400 mg daily; SOF/LDV SOF 400 mg/ledipasvir 90 mg once daily (one tablet)
failed IFN-based treatment. Among 109 patients with genotype 2 treated with SOF/RBV for 12 weeks, 101 patients (93%) achieved an SVR12, similar to results observed in the FISSION and VALENCE trials (5,12). SVR12 rates did not differ between patients with and without cirrhosis (94% [16 of 17] versus 92% [85 of 92]).

SOF (400 mg daily) and weight-based RBV has also been studied in treatment-experienced patients with HCV genotype 2 in the VALENCE (12) and FUSION (11) phase 3 trials. In VALENCE (12), 37 of 41 (90%) treatment-experienced patients had an SVR12 following a 12-week course of SOF/RBV. In the FUSION trial (11), 68 patients who had previously failed an IFN-containing regimen (approximately 75% due to relapse), were randomly assigned to receive SOF/RBV for either 12 or 16 weeks. Overall, an SVR12 was observed in 86% (31 of 36) of patients treated for 12 weeks versus 94% (30 of 32) treated for 16 weeks, although this difference was not statistically significant. In patients without cirrhosis, high rates of SVR12 were observed regardless of treatment duration (12 versus 16 weeks: 96% [25 of 26] versus 100% [23 of 23]). However, lower rates of response were observed among patients with cirrhosis (12 versus 16 weeks: 60% [six of 10] versus 78% [seven of nine]). Although this difference was not statistically significant, the poor response rate among patients treated for 12 weeks suggests that a 16-week regimen is preferred if SOF/RBV is prescribed to this patient subgroup, particularly in IFN-ineligible subjects. Tolerability of SOF/RBV was similar to that observed in the FISSION and POSITRON studies (5,11).

SOF, PEG-IFN and RBV

SOF, PEG-IFN, and weight-based RBV for 12 weeks has been studied in patients with HCV genotype 2 who failed previous therapy in an open-label phase 2 study (86). Among 23 patients with HCV genotype 2 (14 with cirrhosis), an SVR12 rate of 96% (22 of 23) was observed. High rates of response were observed among cirrhotic (93% [13 of 14]) and noncirrhotic patients (100% [nine of nine]). Among the entire study population (n=47), which also included 24 patients with genotype 3, three patients discontinued RBV due to anaemia and one patient discontinued all therapy due to pain. Serious adverse events occurred in four patients (9%); the majority were considered due to PEG-IFN or RBV and none due to SOF.

Recommendations:

35. In treatment-naive patients with HCV genotype 2, SOF (400 mg daily) should be given with weight-based RBV for 12 weeks (Class 1, Level A).

36. In noncirrhotic, treatment-experienced patients with genotype 2, SOF (400 mg daily) should be given with weight-based RBV for 12 weeks (Class 1, Level A).

37. In IFN-eligible, treatment-experienced patients with genotype 2 and cirrhosis, SOF (400 mg daily) should be given with PEG-IFN and weight-based RBV for 12 weeks. In IFN-eligible patients, SOF (400 mg daily) should be given with weight-based RBV for 16 weeks (Class 1, Level B).

TABLE 7 Patients with hepatitis C virus genotype 3

<table>
<thead>
<tr>
<th>Population</th>
<th>Recommended</th>
<th>Alternative (IFN-free)</th>
<th>Alternative (IFN-containing)</th>
<th>Not recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment-naive, noncirrhotic</td>
<td>SOF/RBV × 24 weeks</td>
<td>SOF/LDV/RBV × 12 weeks</td>
<td>SOF/PEG/RBV × 12 weeks</td>
<td>PEG/RBV/PI</td>
</tr>
<tr>
<td>Treatment-experienced, cirrhotic</td>
<td>SOF/RBV × 24 weeks</td>
<td>SOF/LDV/RBV × 12 weeks</td>
<td>SOF/PEG/RBV × 12 weeks*</td>
<td>PTV₃/OBV/DSV ± RBV</td>
</tr>
<tr>
<td>Treatment-experienced, noncirrhotic</td>
<td>SOF/RBV × 24 weeks</td>
<td>SOF/LDV/RBV × 12 weeks</td>
<td>SOF/PEG/RBV × 12 weeks</td>
<td>PEG/RBV</td>
</tr>
<tr>
<td>Treatment-experienced, cirrhotic</td>
<td>SOF/PEG/RBV × 12 weeks</td>
<td>SOF/LDV/RBV × 12 weeks</td>
<td>SOF/PEG/RBV × 12 weeks*</td>
<td>None</td>
</tr>
</tbody>
</table>

*Approved, but clinically inferior regimen. DSV Dasabuvir (250 mg) one tablet twice daily; IFN Interferon; PEG Peginterferon alfa-2a (180 μg subcutaneously/week) or peginterferon alfa-2b (1.5 μg/kg/week); PI Protease inhibitor (eg, boceprevir, telaprevir or simeprevir); PTV₃/OBV Pivaturev (150 mg)/ritonavir (150 mg)/ombitasvir (25 mg) two tablets once daily; RBV Ribavirin (weight-based dosing [1000 mg daily if <75 kg; 1200 mg daily if ≥75 kg]) if combined with sofosbuvir (SOF); 800 mg daily if used in dual therapy with PEG; SIM Simeprevir (150 mg daily); SOF: 400 mg daily; SOF/LDV SOF (400 mg)/ledipasvir (90 mg) once daily (one tablet).
treated with SOF/LDV/RBV for 12 weeks, noncirrhotic patients had higher SVR12 rates than those with cirrhosis (89% [25 of 28] versus 73% [16 of 22]). LDV has limited activity against genotype 3 HCV in vitro (88); therefore, although SOF/LDV is a potential therapeutic option in these patients, additional data in diverse populations are necessary before it can be recommended as first-line therapy over other SOF-containing regimens.

PATIENTS WITH HCV GENOTYPES 4, 5 AND 6 (TABLE 8)

There are limited data to guide treatment decision-making for patients with HCV genotypes 4, 5 or 6 due to the small numbers of patients enrolled in phase 3 clinical trials. In Canada, these genotypes are present in <1% of cases (22). Although the first-generation PIs, BOC and TVR, do not have clinically significant activity against genotypes 4, 5 or 6, SOF (5) and SIM (89) have activity against all of these genotypes. However, due to a paucity of published data, Health Canada and the United States FDA have approved only SOF for the treatment of HCV genotype 4.

PEG-IFN-free regimens

PTVR/OBV ± RBV: The fixed-dose combination of the ritonavir-boosted, NS3/4A PI PTVR and the NS5A inhibitor OBV was studied in patients with HCV genotype 4 in the PEARL-I study (90). Treatment-naive patients were randomly assigned to receive PTVR/OBV with or without weight-based RBV for 12 weeks; all treatment-experienced patients received RBV. Nearly all patients (93%) in this study had mild fibrosis (F0 to F2) and none had cirrhosis. Among subjects who received PTVR/OBV plus RBV, all treatment-naive (42 of 42) and treatment-experienced patients (41 of 41) achieved an SVR12. However, the SVR12 rate was lower (91% [40 of 44]) among treatment-naive patients randomly assigned to the RBV-free regimen, suggesting that RBV is necessary with this drug combination. The safety profile of PTVR/OBV plus RBV was similar to that observed in patients with HCV genotype 1 who were also treated with DSV (14,15).

SOF/LDV: The single tablet regimen of SOF/LDV was evaluated in patients with HCV genotype 4 in a single-center, open-label phase 2a trial (National Institutes of Allergy and Infectious Diseases SYNERGY) (91). Twenty-one patients (38% treatment-experienced; 40% with cirrhosis) received SOF/LDV for 12 weeks. Among 20 patients who completed the post-treatment follow-up period, 19 (95%) achieved SVR12. No patient discontinued treatment due to an adverse event. In a similar, open-label study conducted among 25 patients with HCV genotype 4 (92% treatment-naive; 8% with cirrhosis; 80% IL28B CC genotype) from two centres (ELECTRON-2) (87), a 12-week regimen of SOF/LDV resulted in an SVR12 rate of 96% (24 of 25). Although in vitro data suggest that SOF/LDV should be efficacious in patients with HCV genotype 5 (88), it cannot currently be recommended in this patient subgroup until clinical trial data are available.

SOF and RBV: The all-oral combination of SOF (400 mg daily) and weight-based RBV for 12 or 24 weeks was studied in a randomized trial conducted among 103 Egyptian patients with HCV genotype 4 (52% treatment-experienced; 17% with compensated cirrhosis) (92). Among treatment-naive subjects, the SVR12 rates in the 12- and 24-week treatment arms were similar (84% [21 of 25] versus 92% [22 of 24]). Whereas noncirrhotic patients had similar responses in the 12- and 24-week treatment arms (86% [19 of 22] versus 90% [19 of 21]), patients with cirrhosis appeared to benefit from prolonged therapy (SVR12 in 12- versus 24-week arms: 67% [two of three] versus 100% [three of three]); however, the sample size was limited. Among treatment-experienced patients (41% nonresponders), a 24-week regimen was superior overall (SVR12 rates in 12- versus 24-week arms: 70% [19 of 27] versus 89% [24 of 27]) and in noncirrhotic patients (73% [16 of 22] versus 95% [20 of 21]). In patients with cirrhosis, SVR12 rates in the 12- and 24-week treatment groups were 60% (three of five) and 67% (four of six), respectively (92). These results were supported by a small trial of Egyptian persons living in the United States treated with SOF and weight-based RBV for 12 or 24 weeks (93). In treatment-naive patients, the SVR12 rate was 79% (11 of 14) in patients treated for 12 weeks and 100% (14 of 14) in those treated for 24 weeks. In treatment-experienced patients, corresponding SVR12 rates were 59% (10 of 17) and 87% (13 of 15).

PEG-IFN-containing regimens

SOF, PEG-IFN and RBV: In the phase 2 ATOMIC study (94), SOF (400 mg once daily) was administered for 24 weeks in combination with PEG-IFN/RBV to a small number of patients with HCV genotypes 4 and 6. SVR12 rates of 82% (nine of 11) in patients with genotype 4 and 100% (five of five) in genotype 6 were observed, supporting the antiviral activity of this regimen. In the phase 3 NEUTRINO study (5), a small subset of patients with HCV genotypes 4 (n=28), 5 (n=1) and 6 (n=5) received this regimen for a shorter 12-week treatment period, and SVR12 rates of 96% (27 of 28) in patients with genotype 4 and 100% (six of six) for genotypes 5 and 6 were reported. The one patient with genotype 4 who failed to achieve an SVR12 had cirrhosis and relapsed after cessation of therapy. The tolerability was similar to that observed historically among patients treated with PEG-IFN and RBV.

SIM, PEG-IFN and RBV: The RESTORE study was a phase 3, single-arm, open-label trial that evaluated SIM with PEG-IFN/RBV in 35 treatment-naive and 72 treatment-experienced patients with HCV genotype 4 (95). All patients received 12 weeks of triple therapy followed by 12 or 36 weeks of PEG-IFN and RBV dual therapy. Treatment-naive and relapser patients were eligible for RGT (an additional 12 weeks of PEG-IFN and RBV dual therapy if HCV RNA <25 IU/mL at week 4 and undetectable at week 12; otherwise, an additional 36 weeks) while partial and null responders received 36 weeks of dual therapy (48 weeks total). Overall, 65% (70 of 107) of patients achieved SVR12 (83% [29 of 35] of treatment-naive patients, 86% [19 of 22] of relapers, 60% [six of 10] of partial responders and 40% [16 of 40] of null responders). The majority of patients (89% of treatment-naive and 91% of relapers) met criteria for shortened therapy and SVR12 rates of 94% and 95% were observed in these groups, respectively. Safety was similar to that observed in other phase 3 trials of SIM/PEG-IFN/RBV therapy (6,7).

Recommendations:

40. Patients with HCV genotype 4 should be treated with coformulated PTVR/OBV plus weight-based RBV or SOF/LDV alone for 12 weeks (Class 1, Level B).

41. Patients with HCV genotype 5 should be treated with SOF (400 mg daily) and PEG-IFN plus weight-based RBV for 12 weeks (Class 1, Level B).

42. Patients with HCV genotype 6 should be treated with SOF/LDV for 12 weeks (Class 1, Level B).

ANTIVIRAL RESISTANCE

Emergence of RAVs must be considered with all DAA-based therapies. Due to the high replication rate of HCV and the low fidelity of its RNA-dependent RNA polymerase, new variants emerge continuously (96-98). HCV circulates as a large population of related viruses known as quasispecies. Variants with mutations that lead to DAA resistance emerge by chance and are present at low frequencies...
before DAA exposure. With DAA exposure, these resistant variants have a selective advantage over wild-type virus and will emerge as the dominant strains in the quasispecies. The probability that resistance will emerge with particular DAAAs depends on their genetic barrier to resistance. This barrier usually reflects the number of nucleotide substitutions that must occur for high-level resistance to emerge. For example, the common PI mutation, R155K, requires two substitutions in a genotype 1b virus, but a single substitution in a genotype 1a virus and, consequently, this variant is much more common in patients with genotype 1a (99). In addition to the genetic barrier, the fitness of the RAV is important. A RAV that replicates very poorly is unlikely to emerge on therapy and will be quickly suppressed by wild-type virus once selective drug pressure is removed (97,98). For example, the S282T variant that confers resistance to SOF has extremely low replicative fitness and, as a result, has been identified only rarely in patients during SOF therapy and quickly disappears on treatment cessation (100). In contrast, many variants resistant to NS5A inhibitors are very fit and compete well with wild-type virus (88,101). As a result, NS5A-resistant variants are found in 10% to 15% of genotype 1 patients at treatment initiation achieved an SVR12 with the ON-1 (8) and ION-3 (10) trials. Although this SVR rate was slightly lower than in patients without baseline resistance, the differences were not statistically significant and, therefore, pretreatment identification of resistance would not change management. Detailed baseline sequencing was not performed on all patients treated with the PTVP/OBV/DVV regimen in the phase 3 trials (13-15,75,83); however, the rates of virological failure were low, suggesting that baseline NS5A resistance is unlikely to be a major issue. Whether retreatment of patients with emergent NS5A resistance with an NS5A-inhibitor-containing regimen will be effective remains to be determined.

Recommendations:

43. DAAs should not be used as monotherapy (Class 1, Level B).
44. Dosage reductions of DAAs should not be used to manage treatment-related side effects (Class 2a, Level C).
45. Adherence with DAAs should be maximized to reduce the likelihood of resistance (Class 2a, Level C).
46. Patients who failed therapy with a PI in the past should be treated with a regimen that does not contain a PI (Class 1, Level B).
47. With the exception of testing for Q80K in patients being considered for treatment with SIM, PEG-IFN and RBV, there is no role for baseline resistance testing with current DAA regimens (Class 1, Level A).

DDIs

Before the initiation of any DAA, potential DDIs must be considered, including those attributable to prescription and over-the-counter pharmaceuticals and herbal preparations. Identification of potential interactions requires knowledge of the metabolism of these agents. All currently available HCV PIs (TVR, BOC, SIM, PTV) are inhibitors of CYP3A4, and substrates of Cytochrome P450 3A4 (CYP3A4). Ritonavir, which is used to increase exposure and allow for once-daily dosing of PTV, is also an inhibitor and substrate of CYP3A4. Therefore, PIs are contraindicated with medications that are potent inducers of CYP3A4/5, which would reduce plasma concentrations and the therapeutic effect of the PI, and for those highly dependent on CYP3A4/5 for clearance, in which elevated plasma concentrations are associated with serious and/or life-threatening events (ie, a narrow therapeutic index). Other drug-metabolizing pathways are involved in individual PI handling that may affect DDIs. NS5A inhibitors and nucleotide polymerase inhibitors have fewer known DDIs than PIs; however, before starting therapy, all concomitant medications should be reviewed. Reference to an online updated database of DDIs is recommended before starting therapy (eg, http://www.hep-druginteractions.org).

Recommendation:

48. All prescription, over-the-counter and herbal medications should be reviewed for possible interactions with DAAs before starting therapy (Class 1, Level C).
FUTURE THERAPEUTIC OPTIONS

Numerous additional antiviral agents are under investigation in various stages of clinical development, from phase 1 though premarketing approval. Promising DAA s include NS3/4A PIs (eg, asunaprevir, grazoprevir, sovaprevir, vedovaoprevir), NS5A inhibitors (eg, daclatasvir, GS-5816, elbasvir, ACH-3102 and samatasvir), and non-nucleoside (eg, beclabuvir and GS-9669) and nucleotide NS5B polymerase inhibitors (eg, MK-3682 and ACH-3422). As new data regarding these agents emerge, including their receipt of regulatory approval, these HCV management guidelines will be updated.

ACKNOWLEDGEMENTS:

The authors would like to acknowledge members of the CASL Executive and CASL membership, particularly Drs Eberhard Renner, Rick Schreiber, Gisela Macphail, and Jerome Simon for helpful comments regarding this manuscript.

DISCLOSURES:

Production of these guidelines was not supported by any third party. The authors report the following potential conflicts of interest: Dr Kelly Burak: Consulting fees from Astellas, Gilead Sciences, Janssen and Novartis. Speaking fees from Astellas. Funding from ASTELLAS. Dr Robert Myers: Consulting fees from AbbVie, Boehringer-Ingelheim, Gilead Sciences, Janssen, Merck, Roche Canada and Vertex. Speaking fees from AbbVie, Boehringer-Ingelheim, Gilead Sciences, Janssen and Roche Canada. Consulting fees from AbbVie, Boehringer-Ingelheim, Gilead Sciences, Janssen and Roche Canada. Research support from AbbVie, Gilead Sciences and Vertex. Dr Jordan Feld: Consulting fees from AbbVie, Boehringer-Ingelheim, Bristol-Myers Squibb, Gilead Sciences, Janssen, Merck and Theravance. Research support from AbbVie, Boehringer-Ingelheim, Gilead Sciences, Janssen and Merck. Dr Robert Myers: Consulting fees from AbbVie, Boehringer-Ingelheim, Bristol-Myers Squibb, Gilead Sciences, GlaxoSmithKline, Janssen, Merck, Roche Canada and Vertex. Speaking fees from AbbVie, Boehringer-Ingelheim, Gilead Sciences, Janssen, Roche Canada and Vertex. Research support from Gilead Sciences and Vertex. Dr Hemant Shah: Consulting fees from AbbVie, Bristol-Myers Squibb, Gilead Sciences, Janssen and Merck. Speaking fees from AbbVie, Gilead Sciences, Janssen, Merck, Roche Canada and Vertex. Grant support from Boehringer-Ingelheim and Janssen.

REFERENCES

