Functional Fecal Incontinence in Pediatrics

CDDW 2016 Montreal, Canada

Dominique Lévesque, MD, FRCPC

Gastroenterology & Nutrition Service Montreal Children's Hospital, MUHC

Alfred K. Yeung, MD, FRCPC
Section of Gastroenterology, Hepatology, & Nutrition
Alberta Children's Hospital

Faculty Financial Interest Disclosure

None

Learning Objectives

- Identify the difference between retentive and non-retentive fecal incontinence in children
- Describe the initial steps in management of a child with fecal incontinence
- Assess the need for additional investigations & referral to other allied health members in children with refractory fecal incontinence
- Recognize the global impact of refractory fecal incontinence on the child and family's quality of life

Overview

- Definitions
- Pathophysiology
- Epidemiology
- Impact
- Management
- Second line investigations
- Summary

Definition

- Fecal incontinence
 - Involuntary passage of fecal material in the underwear
 - Occurring in a child with developmental age ≥ 4 years

Definition

- Fecal incontinence
 - Found in 4 main groups of children:
 - Functional constipation
 - Non-retentive fecal incontinence
 - Children with anorectal malformations
 - Children with spinal abnormalities

Functional Fecal Incontinence

FC + FI (80%) Non-Retentive (20%)

Functional Constipation with FI

Pain-Retention-Pain Cycle

Functional Fecal Incontinence

FC + FI (80%) FNFRI (20%)

Functional Non-Retentive FI

H3b. Diagnostic Criteria* for Nonretentive Fecal Incontinence

Must include *all* of the following in a child with a developmental age at least 4 years:

- 1. Defecation into places inappropriate to the social context at least once per month
- No evidence of an inflammatory, anatomic, metabolic, or neoplastic process that explains the subject's symptoms
- 3. No evidence of fecal retention

*Criteria fulfilled for at least 2 months before diagnosis

Functional Non-Retentive FI

- Unknown pathophysiology
 - ? Stress
 - ? Behavioural disorders
 - e.g. ADHD, ASD, Affective disorders

Epidemiology

- Significant problem
 - 3 4.4% of children attending general pediatric clinics
 - 21% seeking tertiary care pediatric GI care

Epidemiology

- Age-related
 - Higher rates in younger children
 - Sweden & Netherlands:
 - 4-5 years: 4.1 9.8%
 - 11-12 years: 1.6 5.6%
 - Sri Lanka:
 - 10 years: 5.4%
 - 16 years: < 1%
- Gender influence
 - Male: female ratio 3:1-6:1

Risk Factors for FI

- Low SES
- Toilet facilities
 - Inadequate
 - Unclean or unhygenic toilets
- Delay in consult
- Urban areas
- War zones
- Hospitalization
- Abuse
 - Emotional, physical

Impact of FI

- Lack of control
- Lower self-worth
- Family stress and dysfunction
- Stigmatization
- Abuse
- Significantly lower HRQoL scores
- Can lead to low self-esteem and social withdrawal if symptoms persist into adulthood

Initial management?

Initial Management

Education

- Explain diagnosis, pathophysiology
- Use simple language and allow time for parent questions
- Review goals of treatment
- Review medications, mechanism of action, and duration of treatment
- Review natural history

Initial Management

- Potentially long road to recovery...
 - At 1 year follow-up, 41-67% of constipated children (with or without fecal incontinence) are not fully recovered
 - 31-52% of children remain symptomatic at 4-10 years after diagnosis and treatment

Initial Management

- Disimpaction
 - Key step in treating fecal incontinence
 - Methods
 - Manual: immediate relief, unpleasant, +/- GA, +/- injury
 - Rectal: fast onset, may compound problem
 - <u>Oral</u>:
 - Route of choice
 - PEG3350 as effective as daily enemas; 1 1.5 g/kg PEG3350 x
 3 days (75% disimpaction rate)
 - Other laxative types also have been successfully used in literature

- Behavioural modification
 - Avoid ignoring body cues
 - Scheduled sit times
 - Address any punitive or abusive behaviour

- Maneuvers to facilitate pelvic floor relaxation
 - Step stool
 - Blowing bubbles

- School plan
 - Emergency kit
 - Address barriers to success

Ongoing pharmacotherapy

Oral laxatives	Dosages
Osmotic laxatives	
Lactulose	1-2 g/kg, once or twice/day
PEG 3350	Maintenance: $0.2-0.8 \text{ g} \cdot \text{kg}^{-1} \cdot \text{day}^{-1}$
PEG 4000	Fecal disimpaction: 1-1.5 g · kg ⁻¹ · day ⁻¹ (with a maximum of 6 consecutive days
Milk of magnesia (magnesium hydroxide)	2-5 y: 0.4-1.2 g/day, once or divided
	6-11 y: 1.2-2.4 g/day, once or divided
	12-18 y: 2.4-4.8 g/day, once or divided
Fecal softeners	
Mineral oil	$1-18 \text{ y: } 1-3 \text{ mL} \cdot \text{kg}^{-1} \cdot \text{day}^{-1}$, once or divided, max 90 mL/day
Stimulant laxatives	
Bisacodyl	3-10 y: 5 mg/day
	>10 y: 5-10 mg/day
Senna	2-6 y: 2.5-5 mg once or twice/day
	6-12 y: 7.5-10 mg/day
	>12 y: 15-20 mg /day
Sodium picosulfate	1 mo-4 y: 2.5-10 mg once/day
	4-18 y: 2.5-20 mg once/day
Rectal laxatives/enemas	
Bisacodyl	2-10 y: 5 mg once /day
	>10 y: 5-10 mg once /day
Sodium docusate	<6 y: 60 mL
	>6 y: 120 mL
Sodium phosphate	1-18 y: 2.5 mL/kg, max 133 mL/dose
NaCl	Neonate <1 kg: 5 mL, >1 kg: 10 mL
	>1 y: 6 mL/kg once or twice/day
Mineral oil	2-11 y: 30-60 mL once/day
	>11 y: 60-150 mL once/day

- ?Dietary fiber
- ?Prebiotics
- ?Probiotics

- Follow-up!!
 - Monitor compliance
 - Medication adjustment
 - Identify obstacles to success
 - Provide reassurance and positive reinforcement

FNRFI - Management

- Similar approach to FC + FI except...
 - ...AVOID LAXATIVES!!
- Behavioural treatment = cornerstone of therapy
- Often benefit from referral to Psychology
- Consider loperamide

What do you do with refractory FI?

Refractory FI

- Medications:
 - Inadequate?
 - Discontinued too soon?
 - Poor compliance?
- Are we being aggressive/rigorous enough?
- Is it the correct diagnosis?
- Do we need further investigations?
- Is it time for neurogastroenterology?
- Is it time for surgical intervention?

Refractory FI Complimentary investigations

- TTG
- TSH
- Electrolytes
- Calcium
- Lead level
- Urine culture

Refractory FI Medications

- Lubiprostone (Amitiza™)
- Linaclotide (Constella™)
- Prucalopride (RESOTRAN™)

Refractory FI *Botox*

- DDW 2015 , poster, Su 1175
 - Anal Botulinum Toxin Injection Is Effective, Safe and Can Be Useful in Patients With Both Normotensive and Hypertensive Anal Pressure
 - Retrospective follow-up over 7 year period
 - -142 patients
 - -Aged 8 mos -19 yrs

- -70% response rate, >6 month duration in 33%
- -17%>1 y

Refractory FI Complementary investigations Colonic transit studies

- Functional studies that examine transit through the colon
- Techniques:
 - Radioopaque markers (aka "SITZMARKS®")
 - Scintigraphy
 - Wireless motility capsule

Refractory FI Complementary investigations Radioopaque marker study

Slow Transit Constipation

Evacuation Disorder

Refractory FI Complementary investigations Colonic scintigraphy

- Involves the ingestion of a radioactive isotope
- Progression followed with large-field view gamma camera
- Correlates with radioopaque marker transit studies
- Two delivery methods:
 - Liquid slurry
 - pH-sensitive polymer coated capsule

Refractory FI Complementary investigations Colonic scintigraphy

- Transit is assessed by calculating the geometric center
 - Weighted average of isotope distribution within the colon and stool

Refractory FI Complementary investigations Wireless motility capsule

- Wireless motility capsule
 - Measures pressure, pH, temperature
 - Using all parameters, can estimate:
 - Gastric empting time
 - Colonic transit time
 - Whole gut transit time

Refractory FI Complementary investigations Colonic transit studies

- Based on current guidelines, only radioopaque marker transit studies deemed useful
 - "If diagnosis is unclear, may help distinguish between FC + FI and FNRFI"

Refractory FI Complementary investigations Colonic manometry

- Measures luminal pressure changes over time
- Solid state versus water-perfused

Refractory FI Complementary investigations Colonic manometry

- Components of the study
 - Fasting phase
 - ± Stimulation
 - Response to caloric load
- Total duration: 4 6 hours

Refractory FI Complementary investigations Colonic manometry

- Severe constipation, unresponsive to medical therapy and associated with slow transit without evidence of an evacuation disorder
- Clarify the pathophysiology of persistent symptoms after removal of aganglionic segment in Hirschsprung's disease
- Evaluation of diverted colon before possible closure of diverting ostomy
- Predict response to antegrade enemas via cecostomy

Journal of Pediatric Surgery

Colonic manometry as predictor of cecostomy success in children with defecation disorders

Maartje M. van den Berg^a, Mark Hogan^c, Donna A. Caniano^b, Carlo Di Lorenzo^a, Marc A. Benninga^d, Hayat M. Mousa^{a,*}

- 32 children with chronic constipation
- Evaluated with colonic manometry and treated with cecostomy
- Patients with HAPCs present 11X more likely to have a successful outcome post-cecostomy
 - "Succesful" = normal bowel movement frequency and no/occasional fecal incontinence

Faure et al, Pediatric Neurogastroenterology: Gastrointestinal Motility and Functional Disorders in Children 2013

- Components of study
 - Presence/absence of the rectoanal inhibitory reflex (RAIR)

- Components of study
 - Presence/absence of the rectoanal inhibitory reflex (RAIR)
 - Resting pressure
 - Rectal sensation
 - Pelvic floor dynamics

- Does not:
 - Diagnose constipation
 - Distinguish between FC + FI and NRFI

- Useful to diagnose:
 - Diagnose non-relaxing internal anal sphincter (RAIR)
 - Pelvic floor dyssynergia
 - Neurodysfunction 2° spinal cord anomalies
 - Pelvic floor myopathy

Pelvic Floor Dyssynergia

Pelvic Floor Dyssynergia

Pelvic Floor Dyssynergia

Refractory FI *Biofeedback*

- rectal sensation
- Strengthens external anal sphincter
- muscle coordination
- Improves dynamics of defecation

Refractory Fl Biofeedback

- Need highly motivated patients
- Expensive
- Lack of service providers
 - Particularly for children
- No supportive evidence in pediatric FC + FI or FNRFI
 - Contrasts with adult studies
 - Recommended if pelvic floor dyssynergia is diagnosed

Tabbers et al, J Pediatr Gastroenterol Nutr. 2014 Feb;58(2):258-74 Rao et al, Neurogastroenterol Motil. 2015 May;27(5):594-609

ACE

- May consider if medically refractory FI
- Allows for antegrade irrigation of the colon
- Goal is complete bowel evacuation and continence
- Several techniques described

ACE

- Malone antegrade continence enema (MACE)
 - Variation on Mitrofanoff
 - First described in 1990
 - Appendix used to create a non-refluxing enteral conduit
 - Multiple modifications subsequent to original paper

ACE

- Chait cecostomy
 - Avoids another
 operation in population
 with extensive surgical
 history
 - Self-retaining pigtailed catheter
 - Inserted percutaneously under fluoroscopic guidance

ACE

- Chait cecostomy
 - Low profile
 - Reversible
 - May not be possible in patients with interposed bowel

ACE

ACE

- Complications s/p ACE:
 - Stoma stenosis/necrosis (27%)
 - Stoma leak (6.6%)
 - Difficulty catheterizing stoma (3.7%)
 - Pain w/ enema administration (3%)
 - Wound infection (2.9%)
 - Adhesive bowel obstruction (1.5%)

ACE

- Complications s/p ACE:
 - Appendiceal necrosis (0.7%)
 - Hypertrophic stomal granulation tissue (0.7%)
 - Mucus discharge and peristomal dermatitis (0.7%)
 - Cecal volvulus (0.7%)
 - Nausea/dizziness w/ enema administration (0.7%)
 - Hyperphosphatemeia (0.7%)

ACE

- Complications s/p tube cecostomy:
 - Tube dislodgement
 - Granulation tissue
 - Site infection
 - Leakage
 - Tube breakage
 - Tract stenosis

ACE

- Heterogeneity in the literature in terms of:
 - Outcomes
 - Complications, Measures of success, QOL
 - When to administer
 - What to administer
 - When to wean
 - How to wean

ACE

Author (reference no)	No. patients/	Type of procedure	Outcome/Success	Diagnosis
Malone et al ⁵⁹	31	MACE	61	Anorectal anomaly, neuropathic bowel, chronic constipation
Curry et al ⁶⁸	300	MACE	79	Spina bifida, anorectal anomaly, Hirschsprung disease, constipation
Marshall et al ⁶⁴	32	MACE	81	Slow transit constipation
Chait et al ⁶⁹	163	Cecostomy	89	Spina bifida, imperforate anus, Klippel–Feil syndrome, cerebral palsy, Hirschsprung disease, paraplegia
Jaffray et el ⁵⁷	49	37-MACE	81	Idiopathic constipation
		12-Cecostomy	75	
King et al ⁵⁸	42	MACE	76	Encopresis, inadequate stool evacuation
Jaffray et al ⁷⁰	80	MACE	70	Idiopathic constipation
Yamout et al ⁷¹	29	Cecostomy		Spina bifida, paraplegia, sacral agenesis and aanorectal malformation
Wong et al ⁷²	69	Cecostomy		Fecal soiling
Donkol et al ⁷³	21	Cecostomy	95	Neurogenic fecal incontinence, anorectal malformations
Siddiqui et al ⁷⁴	105	MACE	69	Myelodysplasia, functional constipation, anorectal malformation, nonrelaxing internal anal sphincter, cerebral palsy
Mugie et al ⁷⁵	99	Cecostomy	Symptom free-71 Improved-20	Spinal abnormality, cerebral palsy, imperforate anus, Hirschsprung disease, urological disorder, behavior problems

ACE

- MACE vs Chait cecostomy
 - No significant difference
 - Successful outcome
 - Rate of complications
 - MACE associated with 3X more leakage
 - CC associated with granulation tissue
 - Changing type of cecostomy

ACE

- MACE vs Chait cecostomy
 - Depends on center-specific expertise and resources
 - Surgeon, IR
 - Available resources post-transition
 - Family's preference

ACE

- Pre-operative assessment:
 - Barium enema
 - Interposed bowel, colonic dilatation
 - Colonic manometry
 - Colonic motility
 - HAPCs
 - +/- anorectal manometry

ACE

Table 3. Issues incompletely covered in perioperative counseling and teaching

	No. Pts.
Pain*	4
Need for bowel prep./nothing by mouth	2
Time to fine-tune regimen	3
Daily time commitment for irrigations	2
Colonic spasms	1
Character of rectal effluent	1
Felt procedure was minimized	1

^{*} Responders did not state whether pain was postoperative, related to catheter insertion or related to irrigations.

ACE

- Don't forget to prepare your patient for transition to adult care
 - Require annual tube changes
 - Ongoing support for individual maintenance regimens
 - Cecostomy site skin care

Emerging therapies

- Neuromodulation
 - Transcutaneous sacral nerve stimulation
 - Percutaneous tibial nerve stimulation
 - Sacral nerve stimulation

Emerging therapies

- Artificial Bowel Sphincters
 - Acticon™
 - FENIX™

- Protocol for head to head trial comparing neuromodulation to FENIX™ just published
 - Williams et al, Int J Colorectal Dis. 2016 Feb;31(2):465-72

Refractory FI Behavioral Modification

- Individual therapy
- Group therapy
- Family therapy
- What does it include?
- Behavioural interventions could be effective when combined with intensive medical management

Refractory FI Behavioral Modification The ACT Matrix

General Approach to FI

Summary

- Functional fecal incontinence is a worldwide problem
- Negatively impacts both children and their families with long-lasting effects
- Important to rule out organic causes and differentiate between FC + FI and NRFI
- Mainstays of treatment involve a multipronged approach with positive reinforcement and support for the family
- Novel emerging treatments on the horizon

Questions?