Management of Chronic Pancreatitis

CDDW 2016

Michael Cantor

Jennifer Telford

Financial Interest Disclosure

(over the past 24 months)

No relevant financial relationships with any commercial interests

CDDW/CASL Meeting Session: Chronic Pancreatitis

CanMEDS Roles Covered in this Session:

✓	Medical Expert (as <i>Medical Experts</i> , physicians integrate all of the CanMEDS Roles, applying medical knowledge, clinical skills, and professional attitudes in their provision of patient-centered care. <i>Medical Expert</i> is the central physician Role in the CanMEDS framework.)
	Communicator (as Communicators, physicians effectively facilitate the doctor-patient relationship and the dynamic exchanges that occur before, during, and after the medical encounter.)
	Collaborator (as <i>Collaborators</i> , physicians effectively work within a healthcare team to achieve optimal patient care.)
	Manager (as <i>Managers</i> , physicians are integral participants in healthcare organizations, organizing sustainable practices, making decisions about allocating resources, and contributing to the effectiveness of the healthcare system.)
	Health Advocate (as <i>Health Advocates</i> , physicians responsibly use their expertise and influence to advance the health and well-being of individual patients, communities, and populations.)
	Scholar (as <i>Scholars</i> , physicians demonstrate a lifelong commitment to reflective learning, as well as the creation, dissemination, application and translation of medical knowledge.)
	Professional (as <i>Professionals</i> , physicians are committed to the health and well-being of individuals and society through ethical practice, profession-led regulation, and high personal standards of behaviour.)

Objectives

At the end of this session, the participant will:

- 1) Know the medical management of chronic pancreatitis
- 2) Know the data on celiac plexus block in the management of chronic pancreatitis
- 3) Understand which patients to refer for endoscopic management
- 4) Understand which patients to refer for surgical management

Case 1

- A 52 year old male presents to the GI clinic with a 6 month history of epigastric pain with radiation to the back. He has pain most days; the pain has progressively increased – interfering with his quality of life. He has been using ibuprofen to deal with the pain – ineffective. Denies jaundice, weight loss nausea or vomiting. 1 formed BM/d.
- PMHx hypercholesterolemia. No ORs.
- Meds: Statin
- Social: 20 Pack Year smoker; drinks 4-6 beers per day and may binge on weekends
- Px: epigastric tenderness; no mass
- CBC / Lytes/ albumin/LFTs normal
- EGD Normal

CT

Case #1

- As a first step you advise the patient to stop alcohol consumption and smoking.
- Is there evidence to support that recommendation?

Smoking

- Independent association between smoking and chronic pancreatitis established (Case control and Population based data)
 - Smoking is estimated to account for 25% risk of CP
 - Average OR ~ 2
- Risk of developing chronic pancreatitis among smokers is dose dependent (> 12 Pack-Years)
 - Alcohol use synergistic
 - Onset of CP among smokers with chronic alcoholic pancreatitis is at least 5 years earlier compared to nonsmokers

Smoking

- Smoking is associated with the progression of established chronic pancreatitis
 - Calcification; DM
- Smoking cessation may reduce the progression of chronic pancreatitis
 - the risk of developing pancreatic calcifications in patients who stopped smoking was similar to that of nonsmokers

Alcohol

- Threshold
 - Minimum consumption ≥ 5 drinks / d
- Ongoing heavy consumption significantly enhances risk of progression to CP and diabetes after a single episode of AP
- Counseling + ETOH cessation decreased risk of ETOH-related RAP

Alcohol

- - Small retrospective series
- Only 5-10% of heavy consumers develop chronic pancreatitis
 - other cofactors: genetic, nutritional deficiency

Lifestyle Modification

- Important to recommend <u>both</u> alcohol and smoking cessation to all patients
- With regards to the case, smoking and ETOH related cessation strategies are introduced.
- He expresses an interest in "natural remedies" and has read on the Internet that antioxidants could be of benefit in terms of treating his pain.
- What is the rationale for using antioxidants in the treatment of pain associated with chronic pancreatitis?
 What would your recommendation be?

Antioxidants

- Theory
 - Patients with chronic pancreatitis may be nutritionally compromised
 - Chronic ETOH
 - Oxidative stress may increase pain in CP
 - Results from an imbalance between the generation of reactive oxygen species (increased in CP) and an inadequate antioxidant defense mechanism (deficiency)
 - Results in cellular injury via increased free radical formation (lipid peroxidation, cellular impairment) and inflammation
 - Studies conflicting results: small numbers and high drop out rates, different patient populations, different formulations

GASTROENTEROLOGY 2009:136:149-159

A Randomized Controlled Trial of Antioxidant Supplementation for Pain Relief in Patients With Chronic Pancreatitis

PAYAL BHARDWAJ,* PRAMOD KUMAR GARG,* SUBIR KUMAR MAULIK,[‡] ANOOP SARAYA,* RAKESH KUMAR TANDON.* and SUBRAT KUMAR ACHARYA*

*Departments of Gastroenterology and ‡ Pharmacology, All India Institute of Medical Sciences, New Delhi, India

- Antioxidant supplementation: Selenium/ Ascorbic acid/Carotene/Tocopherol/ Methionine
- Significant reductions in # painful days per month/use of analgesic tablets and increased number of pain free patients in antioxidant group
- Idiopathic CP >> ETOH CP (2:1)
- Post-randomization drop out higher in placebo arm than treatment arm

Gastroenterology 2012; 143:655-663

Antioxidant Therapy Does Not Reduce Pain in Patients With Chronic Pancreatitis: The ANTICIPATE Study

AJITH K. SIRIWARDENA,* JAMES M. MASON,* AALI J. SHEEN,* ALISTAIR J. MAKIN,§ and NEHAL S. SHAH*

*Hepatobiliary Surgery Unit, §Department of Gastroenterology, Manchester Royal Infirmary, Manchester, United Kingdom; ‡Durham Clinical Trials Unit, Schoo

Antioxidant supplementation: (Selenium/Tocopherol/Ascorbic acid/methionine)

- No benefit
- Different population (ETOH); more smokers

Antioxidants

 Overall, studies show conflicting results: small numbers and high drop out rates, different patient populations, different formulations

Cochrane Review:

- Reduced pain in the antioxidant group than in the control group
 - \rightarrow MD = -0.33, 95% (CI) -0.64 to -0.02, P = 0.04
- Conclusion (mine):
 - Insufficient evidence to suggest routinely
 - Does not appear to be effective in ETOH/smokers (majority of patients)
 - Consider in truly idiopathic, early cases

Case #1

- Upon reviewing the evidence you decide against trialing antioxidant therapy. You recall that pancreatic enzyme replacement therapy (PERT) may be considered.
- What is the rationale for this form of treatment? Effective?

PERT

Pancreatic Enzyme Replacement Therapy

Non-Enteric Coated

- Non-Enteric coated
 - Immediately released
 - Pancreatic enzymes (lipase) acid sensitive
 - Denatured pH < 4
 - Deactivated in stomach
 - Add PPI to enhance bioavailability

Enteric Coated

- Enteric coating of microspheres (< 2 mm) ensures delivery to the SI
 - Dissolves over a variable period of time @ pH > 5.5.
 - Due to erratic HCO₃⁻ secretion in CP, release may not occur until jejunum/ileum

Adverse effects (with higher doses): Nausea, vomiting, bloating, diarrhea; hyperuricemia (purine content) thus gout exacerbation and kidney stones

Plumbing Theory

- Increased pressure within the pancreas from ductal obstruction (stricture/stones)
- Pancreatic ischemia
 - Compartment Syndrome
- Pancreatic enzymes may enable "Pancreatic rest"
 - Limit pancreatic secretion

PERT

Pancreatic Enzyme Replacement Therapy

- Low quality data
 - Meta-Analysis (1997)¹
 - 6 RDBCTs
 - No significant benefit vs. placebo
 - Cochrane Review (2009)²
 - Results from individual studies could not be pooled due to study heterogeneity
 - 2 small studies showed benefit with non-enteric coated pancreatic enzymes^{3,4}
 - Small numbers/data collected in the 80's

PERT

- Problems with our understanding of pain pathophysiology in CP
 - (1) Intraductal pressure does not reliably correlate with pain; patients have incomplete response to ductal decompression Rx
 - (2) Morphologic changes of chronic pancreatitis (stones, strictures, PD dilation) occur in asx and sx patients; no association with severity of pain
 - Shift in focus from structural (plumbing) to neurobiological etiologies (wiring)

Pathophysiology

Pancreatic nerves (autonomic) undergo changes in CP

- Infiltration of peri-neural space by inflammatory cells
- Micro-disruptions in peri-neural sheath leaves nerves exposed
- Increased number of peri-pancreatic nerves
- Increased size of peri-pancreatic nerves

Pathophysiology of Pain in CP

Nociception

- The sensing of noxious stimuli (pain)
- Begins with the primary afferent nociceptor (a nerve)
 - 2 branches target tissue (pancreas) and dorsal horn spinal cord
 - Ascending pathways relay "information" to the brain
 - Perceive and emotionally respond to the pain

Pathophysiology of Pain in CP

- Sensitization
 - tissue injury triggers nociceptor activation
 - Over time can increase the gain of the entire system
 - A sensitized system can lead to:
 - enhanced nerve responses which generate significantly more pain (<u>hyperalgesia</u>)
 - Sensation of pain with normal physiologic stimuli (allodynia)

Managing Pain in CP

- You give the patient a 2 month trial of uncoated pancreatic enzymes in conjunction with a PPI
- The patient fails to respond
- In the interim, the patient sees their family
 MD and is prescribed hydromorphone

Narcotic Analgesia

- Lowest possible dose, last resort
 - Tramadol less incidence of gut hypo-motility
- Undesirable side effects (e.g. narcotic bowel syndrome)
- May lead to increased sensitization of peripheral nerves and hyperalgesia – increasing pain
- Should combine with "adjunctive agents"
 - Low dose TCA (amitriptyline)
 - No direct evidence in CP
- ? Other options to consider (neuro-biologic theory) "wiring"

Pregabalin and CP

Pregabalin

- Abnormal pain processing evident in CP similar to neuropathic pain
- Gabapentinoids have been used to treat chronic neuropthaic pain (e.g. DM neuropathy)

GASTROENTEROLOGY 2011;141:536-543

Pregabalin Reduces Pain in Patients With Chronic Pancreatitis in a Randomized, Controlled Trial

SØREN SCHOU OLESEN,* STEFAN A. W. BOUWENSE, ‡ OLIVER H. G. WILDER-SMITH, $^{\$,\parallel}$ HARRY VAN GOOR, ‡ and ASBJØRN MOHR DREWES*, $^{\parallel}$

*Mech-Sense, Department of Gastroenterology, Aalborg Hospital, Aarhus University Hospital, Aalborg, Denmark; ‡Pain and Nociception Neuroscience Research

Pregabalin group: Significant reduction in pain and adjunct narcotic use

Pregabalin and CP

- Titration Method:
 - Pregabalin 75 mg po bid x 3 days → 150 mg po bid x 1 week → 300 mg po bid
- Adverse effects: CNS
 - More common in pregablin group
 - Lightheadedness, feeling drunk; depression
 - Cochrane Review: only above trial met inclusion criteria – low to moderate evidence to support use but also noted increased adverse effects

Case #1

- The patient does have an improvement in his pain with the addition of pregabalin and tolerates 150 mg po bid.
- The EUS fellow sees the patient in follow up and puts forward the option of celiac plexus block as an additive potential benefit
- Should this be considered in this case?

Celiac Plexus Block and CP

- Bupivicaine + triamcinolone
- Celiac plexus block does not provide effective long term pain relief
- Response rate 55%
 - 26% @ 12 weeks
 - 10% @ 24 weeks

Thoracic Splanchnicectomy

Rationale

- Nociceptive input of the pancreas starts at the celiac plexus and runs to the sympathetic trunci on both sides of the spine and onto the CNS
- Splanchnic nerves arise from the thoracic sympathetic ganglia
- Splanchnic nerves easily identified at thoracocopy (greater, lesser and least) at the level of the thorax before entering the spinal cord T6-T9 (greater), T10-11 (lesser) and T11-12 (least)
 - Thoracic splanchnicectomy provides pain relief in up to 80% of patients immediately (variable)
 - Long-term pain relief falls to less than ~30%
- Not routinely recommended

Endoscopic management of chronic pancreatitis

Indications

- Pancreatic duct obstruction + pain
- Pancreatic fluid collections + symptoms
- Pancreatic duct disruption + symptoms
- Common bile duct stricture

Case #2

- 56 year old male
 - Non-smoker, remote alcohol abuse
 - Previous cholecystectomy for cholelithiasis
- Presents with acute pancreatitis
 - Abdominal pain and nausea
 - Elevated lipase ~1500
 - Elevated WBC
 - Normal liver enzymes
- Abdominal ultrasound
 - Normal biliary system
 - Calcification in pancreas

Case #2

- Responds to medical therapy
- Residual daily post-prandial pain
- Readmitted 2 months later with acute pancreatitis

What would you do next?

Pain caused by duct obstruction

- PD obstruction and increased pressure within the ductal system
 - PD stricture
 - PD stones

Endoscopic PD decompression

Rösch et al. Endoscopy 2002

- Cohort 1018 patients with 5 yrs (2-12 yrs) follow-up
 - 47% strictures
 - 18% stones
 - 32% strictures + stones
 - 3% complex disease involving body/tail
- 60% endoscopic therapy alone
 - Additional 16% in progress
 - Pancreatic sphincterotomy 92%
 - Dilation 19%
 - ESWL 61% with stones alone, 49% stones + stricture
 - Stent > 2 weeks 72%
- 24% surgery

Endoscopic PD Decompression

Rösch et al. Endoscopy 2002

- Complications 13%
- Relief of pain
 - 65% in ITT analysis
 - 86% entire group
- No relieve in pancreatic function
 - Weight gain, diarrhea, diabetes

Endotherapy vs Surgery

Cahen et al. NEJM 2007

- 39 patients with symptomatic chronic pancreatitis and distal PD obstruction
- Randomized to endoscopic vs surgical therapy
 - Surgery = pancreaticojejunostomy
 - ERCP with pancreatic sphincterotomy, stricture dilation and stone removal (+/- ESWL)
- Compared morbidity, mortality, pain scores and SF-36

Endoscopic therapy of PD Stones

PD Stones

- ESGE Guidelines, Endoscopy 2012
 - ESWL followed by ERCP with fragment removal
 - ESWL alone can be considered
 - ERCP without ESWL only for stones < 5 mm, few in number and in the head of the pancreas
 - Intraductal EHL only for failed ESWL

PD Stricture

- ESGE Guidelines, Endoscopy 2012
 - Pancreatic stent placement across a dominant main PD stricture for 12 months
 - Usually with pancreatic sphincterotomy
 - Dilation may be performed prior to stent placement but not alone
 - Step-dilator, balloon, Soehendra stent retriever
 - Consider multiple plastic stents for persistent strictures at 12 months

PD Stricture

- ESGE Guidelines, Endoscopy 2012
 - Fully covered SEMS only in the setting of clinical trials
 - No randomized trials
 - No long-term follow-up
 - Available series leave SEMS in for 2-3 months
 - Migration in a third

Endoscopic PD decompression

- Factors independently associated with success
 - Stone disease in the pancreatic head without a stricture
 - Short duration of disease
 - No (ongoing) exposure to alcohol or cigarettes

EUS-guided access and drainage (ESGAD) of the PD

- Trans-gastric or –duodenal puncture of the PD with guidewire placement
 - Advancement across papilla with rendez-vous procedure
 - Transmural stent placement
- No direct comparisons, case series
 - Failed trans-papillary drainage, need PD > 6 mm for access
 - Similar reports of pain relief to other methods of PD decompression
 - Technically challenging 8% failure
 - Stent dysfunction in 55%
 - High rate of pancreatic cancer at follow-up

Surgical Management

- Consider in patients with...
 - Distal PD obstruction and failed attempt at endoscopic therapy
 - Lateral pancreaticojejunostomy
 - Isolated body/tail disease
 - Pancreatic resection

Pancreatic Pseudocyst

- Approximately 1/3 chronic pancreatitis patients will develop a pseudocyst but few need drainage
- Consider drainage for:
 - Infected
 - Mass effect with symptoms CBD obstruction, early satiety, gastric outlet obstruction
 - Enlarging?
- Transpapillary
 - Communication with main PD
- Transmural
 - EUS-guided

Transpapillary pseudocyst drainage

- Successful drainage associated with:
 - Bridging stent position
 - Longer duration of stent therapy (> 2 weeks)
 - Partial (vs complete) PD disruption

Bridging Entering Transpapillary

Stent Position

Duct Disruption

Bridging Stent Placed

Disruption Resolution

Transmural pseudocyst drainage

- EUS-guided
- Successful drainage associated with:
 - Double pigtail stents
 - Straight stents increase rates of bleeding, migration
 - Multiple stents
 - Long duration of therapy (forever?)
- Complications 13% (3-30%)
 - Antibiotic prophylaxis recommended

CBD stricture

- Chronic pancreatitis is associated with a CBD stricture in 3-23%
- Indications for stent placement:
 - Symptoms
 - Secondary biliary cirrhosis
 - Increase in alkaline phosphatase or bilirubin > 2x
 ULN

CBD stricture

- Rule out malignancy
- Long-term (12 months) therapy
- Multiple plastic vs single plastic
 - 92% vs 24% success¹
- Fully covered SEMS
 - No direct comparison with plastic stents
 - Duration of therapy ~ 6 months

Consider pancreatic cancer

- Pancreatic cancer
 - > 50 years of age
 - Female
 - Caucasian
 - Jaundice
 - Hereditary Pancreatitis

Summary

- PD decompression can relieve pain long term in ~60% patients
 - Stones ESWL works best
 - Strictures Rule out cancer, stent for a year

Thank you

• Questions?