Proteomic analysis of colon cancer phenotypes

Robbert Slebos, PhD
Vanderbilt-Ingram Cancer Center
Nashville, Tennessee

Financial Interest Disclosure

CCD Week 2016
Robbert JC Slebos, PhD

I have the following financial relationships to disclose:

Co-Founder and Stockholder:
Protypia, Inc

I will not discuss off label use and/or investigational use in my presentation
CanMEDS Roles Covered

<table>
<thead>
<tr>
<th>Role</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Expert (as Medical Experts)</td>
<td>Physicians integrate all of the CanMEDS Roles, applying medical knowledge, clinical skills, and professional values in their provision of high-quality and safe patient-centered care. Medical Expert is the central physician Role in the CanMEDS Framework and defines the physician’s clinical scope of practice.</td>
</tr>
<tr>
<td>Communicator (as Communicators)</td>
<td>Physicians form relationships with patients and their families that facilitate the gathering and sharing of essential information for effective health care.</td>
</tr>
<tr>
<td>Collaborator (as Collaborators)</td>
<td>Physicians work effectively with other health care professionals to provide safe, high-quality, patient-centred care.</td>
</tr>
<tr>
<td>Leader (as Leaders)</td>
<td>Physicians engage with others to contribute to a vision of a high-quality health care system and take responsibility for the delivery of excellent patient care through their activities as clinicians, administrators, scholars, or teachers.</td>
</tr>
<tr>
<td>Health Advocate (as Health Advocates)</td>
<td>Physicians contribute their expertise and influence as they work with communities or patient populations to improve health. They work with those they serve to determine and understand needs, speak on behalf of others when required, and support the mobilization of resources to effect change.</td>
</tr>
<tr>
<td>Scholar (as Scholars)</td>
<td>Physicians demonstrate a lifelong commitment to excellence in practice through continuous learning and by teaching others, evaluating evidence, and contributing to scholarship.</td>
</tr>
<tr>
<td>Professional (as Professionals)</td>
<td>Physicians are committed to the health and well-being of individual patients and society through ethical practice, high personal standards of behaviour, accountability to the profession and society, physician-led regulation, and maintenance of personal health.</td>
</tr>
</tbody>
</table>

Outline

- **Proteomic techniques:**
 - Global ‘shotgun’ and Targeted Proteomics

- **Colon carcinoma cell line models:**
 - Proteomic analysis of a panel of 10 colorectal cell lines by MMR status

- **Proteogenomic analysis of TCGA colorectal carcinomas:**
 - Integrative analysis of 90 TCGA samples
Proteomics by Mass Spectrometry

Protein isolation
(Biochemical separation)

Digestion (trypsin)

Biochemical separation

Ionization

Mass selection

Peptide fragmentation

Fragment detection

Spectrum identification

Protein assembly

Protein quantitation

VU Shotgun Proteomics Platform

Cluster Analysis
- Tumor classification
- Protein expression analyses (Webgestalt)

Associations
- Genomic features
- Molecular subtypes
- Clinical features

Co-expression networks
- Protein expression patterns (Netgestalt)

Preprocessing
- MSConvert
- Identification
 - Myrmatch
 - Pepitome
 - MS-GF+

Peptide assembly
- IDPicker

Two-group comparison
- QuasiTel

LC-MS/MS
Thermo Orbitrap

MS-MS data

Preprocessing
- MSConvert
- Identification
 - Myrmatch
 - Pepitome
 - MS-GF+

Peptide assembly
- IDPicker

Two-group comparison
- QuasiTel

Proteomics by Mass Spectrometry

Protein isolation
(Biochemical separation)

Digestion (trypsin)

Biochemical separation

Ionization

Mass selection

Peptide fragmentation

Fragment detection

Spectrum identification

Protein assembly

Protein quantitation

VU Shotgun Proteomics Platform

Cluster Analysis
- Tumor classification
- Protein expression analyses (Webgestalt)

Associations
- Genomic features
- Molecular subtypes
- Clinical features

Co-expression networks
- Protein expression patterns (Netgestalt)

Preprocessing
- MSConvert
- Identification
 - Myrmatch
 - Pepitome
 - MS-GF+

Peptide assembly
- IDPicker

Two-group comparison
- QuasiTel

Proteomics by Mass Spectrometry

Protein isolation
(Biochemical separation)

Digestion (trypsin)

Biochemical separation

Ionization

Mass selection

Peptide fragmentation

Fragment detection

Spectrum identification

Protein assembly

Protein quantitation

VU Shotgun Proteomics Platform

Cluster Analysis
- Tumor classification
- Protein expression analyses (Webgestalt)

Associations
- Genomic features
- Molecular subtypes
- Clinical features

Co-expression networks
- Protein expression patterns (Netgestalt)

Preprocessing
- MSConvert
- Identification
 - Myrmatch
 - Pepitome
 - MS-GF+

Peptide assembly
- IDPicker

Two-group comparison
- QuasiTel

Proteomics by Mass Spectrometry

Protein isolation
(Biochemical separation)

Digestion (trypsin)

Biochemical separation

Ionization

Mass selection

Peptide fragmentation

Fragment detection

Spectrum identification

Protein assembly

Protein quantitation

VU Shotgun Proteomics Platform

Cluster Analysis
- Tumor classification
- Protein expression analyses (Webgestalt)

Associations
- Genomic features
- Molecular subtypes
- Clinical features

Co-expression networks
- Protein expression patterns (Netgestalt)

Preprocessing
- MSConvert
- Identification
 - Myrmatch
 - Pepitome
 - MS-GF+

Peptide assembly
- IDPicker

Two-group comparison
- QuasiTel
LC-MRM-MS targeted protein quantitation

Analysis in Skyline

Absolute quantitation based on peak areas for target peptide and labeled standards

Zhang et al. MCP 2011:M110.006593

Outline

- Proteomic techniques:
 - Global ‘shotgun’ and Targeted Proteomics

- Colon carcinoma cell line models:
 - Proteomic analysis of a panel of 10 colorectal cell lines by MMR status

- Proteogenomic analysis of TCGA colorectal carcinomas:
 - Integrative analysis of 90 TCGA samples
Analysis of 10 colorectal cell lines

- Are known DNA alterations detectable as proteomic changes?
- How do the proteomes compare based on MMR status?

- 10 colorectal cancer cell lines: RKO, HCT116, HCT15, DLD1, LOVO, LS174T, CACO2, COLO205, HT29, SW480
- Selected based on DNA mismatch repair capacity
- Analyzed by shotgun proteomics

Proteomics:
1) Shotgun proteomics by IEF peptide separation, LC-MS/MS on Thermo-LTQ
2) Targeted proteomics for selected proteins using MRM on LTQ-vantage

Shotgun protein inventory of 5,284 protein groups at a protein FDR of 4.6%

Proteomics confirms known genetic changes
Unsupervised protein expression analysis

Observations:
- Biological replicates co-cluster
- HCT15 and DLD1 are related
- No separation by MMR status
- RKO has many unique features

Enrichment analysis of RKO proteins

Transcription Factor 3 (E2A) Complex

CAGGTG binding site

A4GALT
AAK1
ABCA12
ABCA2
ABCB7
ABHD4
ABHD7
ABL2
ABLIM3
ABR
ABTB2
ACAA2
ACADSB
ACCIN1
ACLY
ACOX3
ACSL4
ACTA1
ACVR1B

JUP
KRT8
ADAM10
ITGA6
OCLN
PKP3
CDH1
LLGL2
DLG1
DLG2
CTNND1
ITGB4
CLDN3
PKP3

2571 genes in the human genome having conserved TCF3 promoter of which 514 are detectable as proteins by LC-MS/MS

Conclusion:
Absence of tight-junction and cellular adhesion molecules due to reduced TCF3 activity is evidence for Epithelial-to-Mesenchymal Transition (EMT)
EMT phenotype of RKO cell line

- Invasion Assay
 - bar chart showing SW480 and RKO invasion at 0 Hours, 24 Hours, and 48 Hours

- Wound-healing assay
 - images of SW480 and RKO cells at 0 Hours, 24 Hours, and 48 Hours

RKO prior results on EMT phenotype

- EMT phenotype not discovered by gene expression studies
 - Cancer Res (2014) 74:3438

- Observed in study on sensitivity to EGFR-inhibition
 - RKO is resistant to EGFR-inhibition
 - Loss of epithelial markers E-cadherin and β-catenin
 - High ZEB1 expression by RT-PCR
 - No gain of mesenchymal markers vimentin or fibronectin
 - No biological tests for EMT

 - Mol Cancer Ther (2007) 6:532

Novel proteomic evidence for EMT in RKO by global protein analysis
Outline

- Proteomic techniques:
 - Global ‘shotgun’ and Targeted Proteomics

- Colon carcinoma cell line models:
 - Proteomic analysis of a panel of 10 colorectal cell lines by MMR status
 Cancer Res (2014) 74:387-97

- Proteogenomic analysis of TCGA colorectal carcinomas:
 - Integrative analysis of 90 TCGA samples
 Nature (2014) 513:382-287

TCGA colon genomic analyses

Comprehensive molecular characterization of human colon and rectal cancer

TCGA colorectal dataset
276 carcinomas
- Exon sequence
- DNA copy number
- Promoter methylation
- mRNA/miRNA expression
- 90 tumors available for proteomic analyses
Analysis of Single Amino Acid Variants

Reported by TCGA as somatic variant based on DNA

Present in COSMIC database of cancer-associated mutations

Present in dbSNP database of reported variants in the genome

‘New’ variants for this study
Prevalence of Single Amino Acid Variants

Majority of identified SAAVs represent SNPs, which are more likely to be expressed in the proteome than somatic SAAVs

Proteomic subtypes of colorectal carcinoma
Co-expression analysis of Subtype C

What does proteomics teach us about colon cancer that genetics does not?

- Proteomic profiling identifies a functionally relevant phenotype (EMT) that cannot be inferred from genetic features of RKO cells
- Proteomics identifies DNA variants that are translated to proteins and shows that many have reduced expression
- Proteomics identifies distinct colorectal cancer subtypes that are not detected by transcriptome profiles

Proteomics bridges the inference gap between genetic features and phenotypic characteristics in colon cancer
Acknowledgements

Vanderbilt University
Daniel C. Liebler
Bing Zhang
David L. Tabb
Lisa J. Zimmerman
Patrick Halvey
Xiaojing Wang
Jing Wang
Jing Zhu
Ming Li

NCI CPTAC program (U24 CA159988)