

Luminal Signaling to Colonic Afferent Nerves

David E Reed
Gastrointestinal Diseases Research Unit
Queen's University

DISCLOSURE

Allergan – honorarium to GIDRU for participation roundtable

OBJECTIVES

- Extrinsic innervation of afferent nerves in the colon
- Epithelial mediators that can activate extrinsic afferents
- Luminal factors that can stimulate release of epithelial mediators to activate afferent nerves
- Describe a lumen to nerve inhibitory pathway

EXTRINSIC AFFERENTS IN THE COLON

EXTRINSIC AFFERENTS IN THE COLON

COLONIC ENTEROENDOCRINE CELLS

COLONIC ENTEROENDOCRINE CELLS

- Enteroendocrine cells in the colon contain a number of different mediators
- Predominant mediators include:
 - GLP-1 (*L cells*)
 - Peptide YY (L cells)
 - 5-HT (Enterochromaffin cells)
- Other mediators
 - Chromogranin A
 - Somatostatin
 - Oxyntomodulin

5-HT AND IBS

Mucosal Biopsy

5-HT release correlated with abdominal pain severity

5-HT ACTIVATION POST-INFLAMMATION

COLONIC 5-HT RELEASE

- 5-HT release is increased in IBS patients.
- 5-HT can activate colonic afferents mainly via 5-HT₃ receptors.
- Following recovery from inflammation the response of afferent fibers to 5-HT is increased.

What luminal factors could stimulate release of 5-HT from epithelium?

NUTRIENT SENSING IN THE COLON

- Food is a common trigger for a large proportion of IBS patients
- Recent clinical studies highlight role of diet modification in treating IBS
- Can nutrients signal to colonic afferent nerves?

Amino Acid Receptors On the section (Log 2-4ct) On the s

Fatty Acid Receptors

NUTRIENT SENSING IN THE COLON

A

NUTRIENT-NEURAL SIGNALING IN THE COLON

Lauric Acid 25mM

NUTRIENT-NEURAL SIGNALING IN THE COLON

Effect of Antagonists to 5-HT3/Y2/GLP-1 Receptors

NUTRIENT-NEURAL SIGNALING IN THE COLON

Is the pathway altered in IBS?

- ~95% of bile acids absorbed in ileum
- A subpopulation of IBS patients have increased bile acids in the colon
 - Proportion of patients varies depending on method
- Most common side effect of bile acid transport inhibitors for constipation is abdominal pain

Do bile acids signal to colonic afferent nerves?

A

Rat Distal Colon

Mouse DRG Neuron

B

Human Biopsy

D Mouse Mucosa

Lynn and Blackshaw *J Physiol.* **518:**271-82 Symonds, Peiris et al Gut **64:**618-26 Alemi et al *J Clin Invest* **123:**1513-30 Alemi et al *Gastroenterology* **144:**145-54

Deoxycholic Acid (DCA) – TGR5 Agonist

Deoxycholic Acid (DCA) – TGR5 Agonist

- Bile and bile acids can activate colonic afferents in the proximal and distal colon
- Activation may be direct (i.e. activation of nerve terminal) or indirect via release of mediator
- Excess bile acids may contribute to abdominal pain in subpopulation of IBS patients

LUMINAL INHIBITORY SIGNALING

- Activation of guanylate cyclase C (GC-C) on luminal surface increases chloride secretion
- Linaclotide, GC-C agonist, reduces abominal pain in patients with IBS-C

cGMP INHIBITION OF COLONIC AFFERENTS

LINACLOTIDE AND EPITHELIAL cGMP

Similar mechanism in human afferent nerves?

-15 ^J

cGMP INHIBITION OF HUMAN COLONIC AFFERENTS

cGMP INHIBITION OF HUMAN COLONIC AFFERENTS

Human Appendix

cGMP INHIBITION OF COLONIC AFFERENTS

- GC-C agonists bind to GC-C to increase cGMP.
- cGMP is released extracellularly to reduce mechanosensitive colonic afferents signaling.
- GC-C agonists cause greater inhibtion than exogenous cGMP.

SUMMARY

- Enteroendocrine cells release mediators (e.g. 5-HT) that can activate extrinsic afferent nerves
- Luminal factors (nutrients, bile acids) can activate colonic afferents, in part by release of enteroendocrine mediators
 - Meal induced symptoms in IBS
 - Increase bile acids in IBS patients
- Inhibitory lumen-to-nerve pathway via guanylate cyclase C activation

ACKNOWLEDGEMENTS

Ms. Egina Villalobos-Hernandez

Dr. Michael Beyak

Prof. Ashley Blackshaw

Dr. David Bulmer

Dr. Cian McGuire

Dr. Madusha Peiris

Mr. Adam Broadhead

CIHR/CAG/CCC Fellowship