Post-Infectious Irritable Bowel Syndrome

John K. Marshall MD
Division of Gastroenterology
McMaster University
Pathogenesis of IBS

Enck P. Nat Rev Dis Primers 2016;2:16014
Post-Infectious Irritable Bowel Syndrome

- Stewart GT. *Post-dysenteric colitis.* BMJ 1950;1:405-9
- Chaudhary NA, Truelove SC. *The irritable colon syndrome.* Q J Med 1962;31:3-7-22
Post-Infectious Irritable Bowel Syndrome

- Altered bowel habit and abdominal discomfort that persist after acute enteric infection despite clearance of the inciting pathogen and recovery from the acute illness
Walkerton, Ontario

- Agricultural community
- Population ~5000
- 180km NW of Toronto
- Groundwater supply: 3 drilled wells with chlorination units
Figure 8: Modelled Farm Drainage
Walkerton, Ontario

The drainage path was created using a digital elevation model (DEM). It shows surface water run-off, assuming that water flows downward along the steepest slope available. The DEM has a 10 meter spatial resolution.
Walkerton: May 2000

<table>
<thead>
<tr>
<th>Outcome</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reported cases of acute GE</td>
<td>1346</td>
</tr>
<tr>
<td>Affected Walkerton residents</td>
<td>799</td>
</tr>
<tr>
<td>Field epidemiology estimate of acute GE</td>
<td>2321</td>
</tr>
<tr>
<td>Affected Walkerton residents</td>
<td>1286</td>
</tr>
<tr>
<td>Hospitalizations*</td>
<td>65</td>
</tr>
<tr>
<td>Documented hemolytic uremic syndrome+</td>
<td>27</td>
</tr>
<tr>
<td>Attributable deaths</td>
<td>6</td>
</tr>
</tbody>
</table>

* 55% age 0 to 8
+ 52% age 1 to 4

BGOS Health Unit Investigative Report
Walkerton Health Study

Funded by Ontario MOH and CCFC

Multidisciplinary team:
- Nephrology, ID (UWO)
- GI (McMaster)

Mission: study long-term health outcomes and facilitate local access to medical care

Longitudinal cohort study 2001-2008

Recruitment through local town hall meetings and advertisements

In-person annual standardized interviews and assessments

Total enrolment: N=4561
Incidence of IBS 2 Years After Acute Gastroenteritis in Walkerton Ontario

Study cohort at risk of PI-IBS (N=2069):
Permanent Walkerton adult resident
No prior IBS, IBD, celiac disease

“Self-Reported” GE:
Increased stool frequency in May 2000 (> 3 BM/d for ≥ 3d)

“Clinically Suspected” GE:
Positive stool culture OR
Healthcare contact for acute illness during outbreak OR
Report of acute illness to 2000 public health survey

Marshall JK. Gastroenterology 2006;131:445-50
IBS After Infectious Enteritis: Systematic Review and Meta-Analysis

Klem F. Gastroenterology 2017 [in press]

- 45 studies (N=21,421)
- Follow-up 3 months to 10 years
- Relative risk for IBS if infectious enteritis in last 12 months:
 - 4.2 (95% CI 3.1-5.7)
- Pooled PI-IBS prevalence
 - 10.1% (95% CI 7.2-14.1) at 12 months
 - 14.5% (95% CI 7.7-25.5) > 12 months
- Risk factors for PI-IBS:
 - Female: OR 2.2 (1.6-3.1)
 - Antibiotics: OR 1.7 (1.2-2.4)
 - Anxiety: OR 2.0 (1.3-2.9)
 - Depression: OR 1.5 (1.2-1.9)
 - Somatization: OR 4.1 (2.7-6.0)
 - Neuroticism: OR 3.3 (1.6-6.5)
 - Clinical indicators of enteritis severity
PI-IBS After Viral Gastroenteritis

A Risk Score for Post-Infectious Irritable Bowel Syndrome

Risk Score Ranges from 0 to 90:
Low (<42) = 10%, Intermediate (43-68) = 35%, High (>69) = 60%
Age under 60 = 6; female = 9; duration more than 7 days = 7; maximum stool frequency more than 6 = 6; bloody stool = 4; abdominal cramps = 32; fever = 5; weight loss over 10 pounds = 8; pre-morbid anxiety/depression = 1; post infectious anxiety/depression = 10

McMaster University
JKM 2017

Persistence of PI-IBS Symptoms
(among subjects with IBS in 2002/2003)

Stability of IBS Phenotype

Long-Term Clinical Course of Shigellosis: 10-Year Follow-Up Study

- Prospective cohort study of 2001 Shigella outbreak in Korea
- 124 hospital employees infected by Shigella sonnei due to contaminated cafeteria food
- 105 age- and gender-matched non-infected controls

<table>
<thead>
<tr>
<th>Survey time (yr)</th>
<th>Shigella-exposed group</th>
<th>Control group</th>
<th>Adjusted OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total No.</td>
<td>No. of IBS</td>
<td>Total No.</td>
</tr>
<tr>
<td>1st</td>
<td>87</td>
<td>12 (13.8%)</td>
<td>89</td>
</tr>
<tr>
<td>3rd</td>
<td>87</td>
<td>13 (14.9%)</td>
<td>89</td>
</tr>
<tr>
<td>5th</td>
<td>53</td>
<td>11 (20.8%)</td>
<td>49</td>
</tr>
<tr>
<td>8th</td>
<td>71</td>
<td>11 (15.4%)</td>
<td>65</td>
</tr>
<tr>
<td>10th</td>
<td>86</td>
<td>20 (23.3%)</td>
<td>76</td>
</tr>
</tbody>
</table>
Luminal and Mucosal Factors in the Pathogenesis of IBS

Barbara G. Gastroenterology 2016;150:1305-18
Increased Intestinal Permeability with IBS in Walkerton Ontario

% Lactulose-Mannitol Ratio > 0.020

P=0.007

N=86 N=132

Genetic Associations with PI-IBS

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Gene Category</th>
<th>SNP ID</th>
<th>Associated Allele</th>
<th>Frequency Controls</th>
<th>Frequency Cases</th>
<th>Odds Ratio (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLR9</td>
<td>Innate immunity</td>
<td>P545P rs352139</td>
<td>A</td>
<td>41%</td>
<td>48%</td>
<td>1.38 (1.10-1.73)</td>
<td>0.0059</td>
</tr>
<tr>
<td>TLR9</td>
<td>Innate immunity</td>
<td>-T1237C rs5743836</td>
<td>T</td>
<td>82%</td>
<td>87%</td>
<td>0.69 (0.50-0.95)</td>
<td>0.025</td>
</tr>
<tr>
<td>IL-6</td>
<td>Innate immunity</td>
<td>-G174C rs1800795</td>
<td>C</td>
<td>39%</td>
<td>44%</td>
<td>1.28 (1.01-1.64)</td>
<td>0.042</td>
</tr>
<tr>
<td>CDH1</td>
<td>Intestinal epithelial barrier</td>
<td>-C160A rs16260</td>
<td>A</td>
<td>26%</td>
<td>31%</td>
<td>1.26 (0.99-1.61)</td>
<td>0.035</td>
</tr>
</tbody>
</table>

IL-6 and CDH1 associations stronger when analysis restricted to subjects with confirmed gastroenteritis exposure

Genetic Variants are Independent PI-IBS Risk Factors
Multiple Logistic Regression Controlling for Clinical Predictors

<table>
<thead>
<tr>
<th>Variables</th>
<th>Reference</th>
<th>(P) value</th>
<th>Odds ratio (95% confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs5743836:T (TLR9)</td>
<td>C</td>
<td>.0168</td>
<td>1.536 (1.080–2.182)</td>
</tr>
<tr>
<td>rs2069861:T (IL6)</td>
<td>C</td>
<td>.0345</td>
<td>1.509 (1.031–2.209)</td>
</tr>
<tr>
<td>rs16260:A (CDH1)</td>
<td>C</td>
<td>.0143</td>
<td>1.398 (1.069–1.829)</td>
</tr>
<tr>
<td>Age (y)</td>
<td></td>
<td>.0159</td>
<td>0.986 (0.975–0.997)</td>
</tr>
<tr>
<td>Gender</td>
<td>Female</td>
<td>.0238</td>
<td>1.521 (1.057–2.187)</td>
</tr>
<tr>
<td>Features of acute enteric illness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of diarrhea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2–3 d</td>
<td>0–1 d</td>
<td>.976</td>
<td>0.987 (0.428–2.275)</td>
</tr>
<tr>
<td>4–5 d</td>
<td>0–1 d</td>
<td>.363</td>
<td>1.484 (0.634–3.476)</td>
</tr>
<tr>
<td>6–7 d</td>
<td>0–1 d</td>
<td>.626</td>
<td>1.242 (0.519–2.977)</td>
</tr>
<tr>
<td>>7 d</td>
<td>0–1 d</td>
<td>.136</td>
<td>1.855 (0.823–4.183)</td>
</tr>
<tr>
<td>Bloody stools</td>
<td>No</td>
<td>.00338</td>
<td>1.845 (1.225–2.779)</td>
</tr>
<tr>
<td>Abdominal cramps</td>
<td>No</td>
<td>.000745</td>
<td>7.754 (2.258–25.499)</td>
</tr>
<tr>
<td>Weight loss (>10 lb)</td>
<td>No</td>
<td>.000921</td>
<td>2.064 (1.345–3.169)</td>
</tr>
</tbody>
</table>

Prevalence of Dyspepsia at 8 Years Using Rome II Definition (Short-Form Leeds Dyspepsia Questionnaire)

OR for dyspepsia at 8 years:
- Clinically confirmed vs. controls = 2.67 (1.80-3.95)
- Self-reported vs. controls = 2.38 (1.69-3.38)

Post-Infectious IBS After Long-Distance Travel

- Survey of 1190 long-distance travelers, 7 months after journey
 - Traveler’s diarrhea (at least moderate) in 43.3%
 - New-onset IBS at 7 months post travel in 7.2% (95% CI 5.8-8.6)
 (10.7% if diarrhea during travel vs. 2.5% if no traveler’s diarrhea)
Conclusions

• The Walkerton outbreak was an awful human tragedy
• The contributions of citizens of Walkerton have enhanced understanding of post-infectious IBS
• New insights:
 – Epidemiology and natural history
 • Adult
 • Adolescent
 – Risk factors and risk profiling
 – IBS phenotype stability
 – Risk of IBD
 – Role of intestinal permeability
 – Genetic risk factors
Acknowledgements

McGill University & Genome Quebec Innovation Centre
Alexandra-Chloe Villani, Genevieve Geneau, Alexandre Belisle Denis Franchimont

McMaster University
Stephen M. Collins, Marroon Thabane

University of Western Ontario
Bill Clark, Amit Garg, Jennifer MacNab

Ontario Institute for Cancer Research
Mathieu Lemire

Mayo Clinic
Yuri Saito

Study Participants
THANK YOU