Image enhanced endoscopy for neoplasia surveillance in IBD

Sanjay Murthy, MD, MSc, FRCPC The Ottawa Hospital IBD Centre Division of Gastroenterology, University of Ottawa

Disclosures

None

Learning Objectives

- Review historical concepts guiding IBD neoplasia surveillance recommendations and rationale for advanced surveillance methods
- Review the role of image enhanced endoscopy (IEE) in neoplasia surveillance in IBD, with a focus on chromoendoscopy

Tumorigenesis in IBD

- "Field carcinogenesis" multifocal genetic aberrations in colitic mucosa
 - ? multifocal tumour development
 - ? accelerated progression
- Irregular lesions that are difficult to delineate with high cancer risk
 - Stricturing lesions
 - Laterally-spreading tumours
 - Irregular plaques and nodules
- "Invisible" flat neoplastic lesions

Rubin, Gastro 1992; Lofberg, Gastro 1992; Soderlund, IBDJ 2011

Flat

Neoplastic Growth in IBD

Historical CRC Risk in IBD Dysplasia

High-grade dysplasia

- 40 70% rate of synchronous CRC
- 25 30% rate of metachronous CRC

DALM

• 42 to 45% rate of synchronous CRC

Low-grade dysplasia

• 20 to 25% rate of synchronous CRC

Rutter et al., Gastro 2006; Bernsteinet al., Lancet 1994; Connell et al., Gut 1994; Taylor et al., Dis Col Rectum 1992; Ullman et al., Gastro 2003

Perception – IBD colitis is associated with insidious and accelerated neoplasia development that evades endoscopic detection

Traditional Guidance for Neoplasia Surveillance in IBD

- Interval q 1-3 (U.S.) or q 1-5 (Europe) years, guided by other risk factors
 - Disease duration/extent/severity, family history of CRC, past neoplasia, PSC
 - Annually PSC, FDR < age 50, previous neoplasia, stricture
- ≥ 33 random biopsies throughout colon to detect "invisible lesions"; targeted biopsies of visible lesions
- Colectomy for any invisible, indistinct, irregular, or high-grade neoplasia, due to fears of being unresectable and harbouring cancer

Laine et al., GIE 2015 Farraye et al., Gastro 2010 Kornbluth et al., AJG 2010 Cairns et al., Gut 2010 Itzkowitz et al. IBDJ 2005

COLITIS SURVEILLANCE

BSG 2010

Limitations of Older Studies of CRC Risk

- Effective treatments for IBD \rightarrow T2T (mucosal healing)
- Improved resolution of endoscopes
- Better bowel preparation regimens
- Recognition of quality metrics for colonoscopy (+ ADR, training, etc.)
- Adoption of systematic surveillance protocols before mid-90's

High-Definition Endoscopy

Standard Definition Image High Definition Image

HDE associated with 2 fold higher neoplasia detection rate in UC Subramanian et al., IBDJ 2013

Pedunculated sigmoid polyp.

Normal sigmoid colon as seen with colonoscope, showing depth of focus.

Normal sigmoid colon as seen with colonoscope showing details of vascular pattern.

1971 Images obtained from fiberoptic sigmoidscope

Salmon PR, Branch RA, Collins C, Espiner H, Read AE. Clinical evaluation of fibreoptic sigmoidoscopy employing the Olympus CF-SB colonoscope. Gut 1971;12:729-35.

Inflammatory pseudopolyps (rectum).

Carcinoma of rectum.

Colonic IBD is a Risk Factor for Colorectal Cancer (CRC)

	Relative Risk (versus non-IBD)				
Population-Based Studies	Ulcerative Colitis	Crohn's Disease			
Ekbom (NEJM 1990)	5.7 (4.6 – 7.0)				
Bernstein (Cancer 2001)	2.75 (1.91 – 3.97)	2.64 (1.69 – 4.12)			
Gillen (Gut 1994)	19.2 (12.9 – 27.5)	18.2 (7.8 – 35.8)			
Herrington (Gastro 2012)	1.6 (1.3 – 2.0)	1.6 (1.2 – 2.0)			
Jess (Gastro 2012)	2.4 (0.6 – 6.0)	1.9 (0.7 – 4.1)			

Meta-analyses of recent population-based studies: **CRC risk 1.5 to 2-fold** higher for both Crohn's disease (CD) and ulcerative colitis (UC)

Shortcomings of Traditional Guidance

- No RCTs evaluating the optimal surveillance technique, timing or frequency or whether surveillance colonoscopy is even effective in IBD
- Low yield of random biopsies with latest technologies
 - \rightarrow ~ 0.1 % of biopsies; ~ 1% of patients Laine et al., GIE 2015
- > 90% of neoplastic lesions are visible using HD-WLE

Laine et al., GIE 2015

 More sophisticated technologies now exist to allow better detection and management of neoplastic lesions in IBD

Updated Guidance (SCENIC-AGA, ASGE, ECCO, BSG)

- Chromoendoscopy (dye spray colonoscopy, DSC) with targeted biopsies alone is the preferred strategy for neoplasia surveillance
- Random biopsies may be performed if using WLE
- Virtual chromoendoscopy (NBI, iScan, FICE) is not recommended over DSC or WLE for neoplasia detection
- Endoscopic resection with continued surveillance is recommended over colectomy for lesions with (i) clear borders; (ii) no invasive features; and (iii) clear endoscopic and histologic resection margins (complete removal)
- Surveillance with DSC is recommended in the setting of invisible dysplasia

Dye Spray Colonoscopy (DSC)

Contrast or absorptive dyes sprayed throughout colonic mucosal surface during colonoscopy (catheter or water jet)

→ Methylene blue 0.04% (absorptive), indigo carmine 0.03% (contrast)

Enhances borders and surface architecture ("unmasks lesions")

- Seconds dye fills lesion borders and colonic pits → demarcates lesion and highlights surface pattern
- ≥ 1 min (methylene blue) dye is taken up preferentially by nonneoplastic epithelial cells → contrasts lesion from surroundings

Technique of DSC

- Cleaning and suctioning during entry identify if DSC feasible
- Prepare dye if adequate bowel preparation and minimal inflammation → 20 mL of 10mg/mL (1% w/v) stock MB in 500 cc sterile water (0.04%)
- Switch water bottle to dye in cecum
- Apply generously t/o, esp to anti-gravity side in segments (AC, TC, DC, RS)
- Re-intubate each segment, suction excess dye and inspect carefully

SURFACE Criteria for DSC

Strict patient selection \rightarrow Colonic IBD \geq 8 years' duration, in clinical remission

Unmask the mucosal surface \rightarrow Excellent bowel preparation

Reduce peristaltic waves \rightarrow Consider spasmolytic agent

Full length staining of the colon \rightarrow Panchromoendoscopy

Augment detection with dyes \rightarrow indigo carmine or methylene blue

Crypt architecture analysis \rightarrow Pit pattern classification

Endoscopic targeted biopsies of suspicious lesions

Kiesslich R. and Neurath M., Gastroenterol. Clin. North Am, 2012

Flat lesion (Paris IIa)

Laterally Spreading Tumour

Murthy et al., GIE 2013

Delineation and Characterization of Neoplastic Lesions with CE

Kiesslich R and Neurath M, Gastroenterol Clin North Am 2012

Benefits of DSC

- 1. Unmasks neoplastic lesions by filling crevices and differential absorption
- 2. Lesion characterization differentiate neoplastic and non-neoplastic
- 3. Facilitates lesion resection by highlighting borders
- 4. Eliminates need for routine random biopsies
- 5. Cost-effective relative to WLE + random biopsies Konijeti, GIE 2014

Drawbacks of DSC

- 1. Requires meticulous bowel preparation
- 2. Requires near-complete mucosal healing
- 3. Inconvenient (labour intensive if using catheter spray; messy)
- 4. Potential increase in procedure time
- 5. Unclear clinical and/or cost benefit

How Do I Know if a Lesion is Dysplastic?

- Look for **circumscribed lesion** or **irregular area** of mucosa \rightarrow zoom in
- Evaluate lesion morphology finger-like or irregular fleshy projections, or polyps in clusters that are similar in architecture to surrounding mucosa, are typically post-inflammatory polyps
- Evaluate **dye uptake** dysplastic lesions generally do not take up dye
- Evaluate surface architecture and compare to surrounding mucosa → different architecture should be considered suspicious and sampled
- N.B. Kudo classification is not validated in colitis-associated dysplasia

Post-inflammatory polyps

Laterally-spreading tumours

Evidence for DSC vs SD-WLE in IBD

 \bigcirc

Author	Year	Country	Dye	Staining	Design	No. of pts.	# Pts. with	Outcome
							dysplasia	(chromo vs. standard)
Kiesslich	2003	Germany	MB	Pancolonic	Randomized 1:1	165	19	32 vs. 10 dysplastic lesions
Matsumoto	2003	Japan	IC	Pancolonic	Prospective cohort	57	12	86% versus 38% sensitivity
Rutter	2004	UK	IC	Pancolonic	Prospective cohort	100	7	9 versus 2 dysplastic lesions
Hurlstone	2005	UK	IC	Targeted	Prospective cohort	700	81	69 versus 24 dysplastic lesions
Kiesslich	2007	Germany	MB	Pancolonic	Randomized 1:1	153	15	19 versus 4 dysplastic lesions
Marion	2008	US	MB	Pancolonic	Tandem colonoscopy	102	19	17 versus 3 patients with dysplasia
Günther	2011	Germany	IC	Pancolonic	Randomized 1:1:1	150	6	6 versus 0 patients with dysplasia
Hlavaty	2011	Slovakia	IC	Pancolonic	Tandem colonoscopy	30	7	7 versus 0 patients with dysplasia

SCENIC meta-analysis of 8 studies: Relative benefit 1.8 (1.2-2.6); Absolute benefit 6% (3%-9%)

Randomized Controlled Trials

Feuerstein et al., GIE 2019

Randomized Controlled Trials

Non-Randomized Controlled Trials

(1) Chromoendoscopy arm included use of both chromoendoscopy and confocal microscopy

Feuerstein et al., GIE 2019

Reasons for Limited Uptake of DSC

- Uncertain benefit over HD-WLE
- Uncertain impact on CRC or CRC-related mortality
- Uncertainty of surveillance intervals if dysplasia detected
- Uncertain cost implications (with more frequent surveillance)
- Inadequate training and/or experience
- Requirement for healed bowel, meticulous cleansing
- Inconvenient \rightarrow time-consuming, messy
- Lack of re-imbursement
- Availability of dye, staining of colonoscopes
- Patient reticence \rightarrow bluish-green discoloration of stool and urine

However, please consider that . . .

- DSC is extremely easy to do
- Time to clean and stain the colon ≈ time to take and document 32+ random biopsies
- DSC with targeted biopsies forces careful inspection of mucosa
- DSC aids in the detection and resection of flat lesions
- Methylene blue is cheap (\$60/250 mL at Amazon) = < \$5 per procedure
- On a per-procedure basis, DSC with targeted biopsies is <u>much</u> cheaper than WLE with non-targeted and targeted biopsies (~ 50% cheaper)
- Unmasking lesions with DSC may identify patients at increased risk of CRC

Virtual Chromoendoscopy

- Light filters (NBI) or post-image processing (iscan, FICE) to focus on narrow wavelengths of light
- Highlights vascular pattern \rightarrow indirect appreciation of pit pattern
- Earlier studies showed that NBI was not superior to SD-WLE or HD-WLE for lesion detection, but similar to DSC for lesion characterization

Chiu et al., Gut 2007; Rastogi et al., GIE 2007; Ignjatovic et al., AJG 2012; van de Broek et al., Endoscopy 2011

• Recent RCTs in IBD and non-IBD have shown more promising results

Bisschops et al., Gut 2018; Iaccuci et al., AJG 2018; Atkinson et al., Gastroenterology 2019

Narrow Band Imaging

(e) C

(f) C+i-Scan1

(g) C+i-Scan2

(h) C+i-Scan3

iScan

RCTs of VCE vs WLE

(D) Blinding of outcome assessment (detection bias)

(E) Incomplete outcome data (attrition bias)

(F) Selective reporting (reporting bias)

(G) Other bias

RCTs of VCE vs DSC

	Virtual chromocolo	noscpy	Dye spraying chromocolon	oscpy		Risk Ratio	Risk Ratio	Risk of Bias
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI	ABCDEFG
3.1.1 Autofluorescer	nceimaging chromoc	olonoscop	y vs. Dye spraying chromoo	olonosco	ру			
Vleugels 2018 Subtotal (95% CI)	13	105 105	20	105 105	22.6% 22.6%	0.65 [0.34, 1.24] 0.65 [0.34, 1.24]		••••••
Total events	13		20					
Heterogeneity: Not ap	oplicable							
Test for overall effect	Z = 1.31 (P = 0.19)							
3.1.2 I-scan chromo	colonoscopy vs. Dye	spraying	chromocolonoscopy					
lacucci 2017 Subtotal (95% CI)	14	90 90	22	90 90	25.1% 25.1%	0.64 [0.35, 1.16] 0.64 [0.35, 1.16]		
Total events	14		22					
Heterogeneity: Not ap	oplicable							
Test for overall effect	Z = 1.47 (P = 0.14)							
3.1.3 Fuji intelligent	color enhancement	chromoen	doscopy vs. Dye spraying c	hromoco	lonoscop	y .		
Gulati 2018	0	23	5	25	1.4%	0.10 [0.01, 1.69]		999999
Subtotal (95% CI)		23	-	25	1.4%	0.10 [0.01, 1.69]		
Total events	0		5					
Heterogeneity: Not ap	oplicable							
Test for overall effect	Z = 1.60 (P = 0.11)							
3.1.4 Narrow band in	mage virtual chromo	colonosco	py vs. Dye spraying chromo	colonos	сору			
Bisschops 2016	14	65	14	66	21.9%	1.02 [0.53, 1.96]		
Feitosa 2011	0	16	4	13	1.4%	0.09 [0.01, 1.56]	/ \	779777
Pellise 2011	4	33	4	27	6.6%	0.82 [0.23, 2.97]	()	
Watanabe 2016	16	133	14	130	20.9%	1.12 [0.57, 2.19]	\ +- /	?? 🗣 ? ? 🗣 ?
Subtotal (95% CI)		247		236	50.9%	0.97 [0.63, 1.51]	▲ /	
Total events	34		36					
Heterogeneity: Tau ² =	= 0.00; Chi ² = 3.01, d	f = 3 (P =	0.39 ; $I^2 = 0\%$					
Test for overall effect	: Z = 0.12 (P = 0.90)							
Total (95% CI)		465		456	100.0%	0.77 [0.55, 1.08]	◆	
Total events	61		83					
Heterogeneity: Tau ² =	= 0.03; Chi ² = 6.84, d	f = 6 (P =	$(0.34); I^2 = 12\%$				0.005 0.1 1 10	200
Test for overall effect	Z = 1.52 (P = 0.13)						Favours dye spray chromoendoscopy Favours virtual chromoe	ndoscopy
Test for subgroup dif	ferences: Chi ² = 3.75	, df = 3 (P	= 0.29), l ² = 20.1%					
Risk of bias legend								
(A) Random sequence	generation (selection	ı bias)						
(B) Allocation conceal	iment (selection bias)							
(C) Blinding of partici	pants and personnel (performan	ice blas)					
(D) blinding of outcor	me assessment (detec	tion blas)						
(E) Incomplete outcon	ne data (attrition blas)	,						
(C) Other biss	(reporting bias)							El-Dallal M. et al. I
(a) Other blas								

RCTs of VCE vs CE and HD-WLE in non-IBD

Individual patient level data meta-analysis for high definition White Light Endoscopy (WLE) vs Narrow Band Imaging (NBI) stratified by bowel preparation

Also improved adenoma detection only with second-generation bright NBI

Atkinson et al., Gastroenterology 2019

Lesion Characterization (CE/VCE)

NBI International Colorectal Endoscopic (NICE) Classification*

	Type 1	Type 2	Type 3	
Color	Same or lighter than background	Browner relative to background (verify color arises from vessels)	Brown to dark brown relative to background; sometimes patchy whiter areas	
Vessels	None, or isolated lacy vessels coursing across the lesion	Brown vessels surrounding white structures**	Has area(s) of disrupted or missing vessels	
Surface Pattern	Dark or white spots of uniform size, or homogeneous absence of pattern	Oval, tubular or branched white structure surrounded by brown vessels**	Amorphous or absent surface pattern	
Most likely pathology	Hyperplastic	Adenoma***	Deep submucosal invasive cancer	
Examples				

* Can be applied using colonoscopes with or without optical (zoom) magnification

** These structures (regular or irregular) may represent the pits and the epithelium of the crypt opening.

*** Type 2 consists of Vienna classification types 3, 4 and superficial 5 (all adenomas with either low or high grade dysplasia, or with superficial submucosal carcinoma). The presence of high grade dysplasia or superficial submucosal carcinoma may be suggested by an irregular vessel or surface pattern, and is often associated with atypical morphology (e.g., depressed area).

Kudo

I		Round pit (normal pit)
n	000	Asteroid pit
IIIs		Tubular or round pit that is smaller than the normal pit (Type I)
IIIL.		Tubular or round pit that is larger than the normal pit (Type I)
IV	8	Dendritic or gyrus- like pit
¥A		Irregular arrangement and sizes of III1, IIIs, IV type pit pattern
VN		Amorphous or non- structural pit pattern

Other Methods (not currently in routine use)

- Autofluorescence → shown to be inferior to DSC in recent pilot RCT (Vleugels et al., Lancet Gastroenterol Hepatol 2018)
- Confocal Endomicroscopy allows real-time in vivo histology
- \rightarrow Not useful for improving detection over large surface areas
- \rightarrow Improves lesion characterization slightly over current IEE methods
- \rightarrow Time-consuming, costly, large training curve
- \rightarrow Unclear cost advantage over current methods
- \rightarrow Not practical for commercial use

Real-Time Lesion Characterization

Differentiation of Neoplastic and Non-Neoplastic Lesions							
Technique	Setting	SENS	SPEC	Accuracy	Reference		
Chromoendoscopy	UC	93%	88-93%	~90%	Kiesslich, Gastro 2003 Hurlstone, Endoscopy 2005		
Chromoendoscopy	Non-IBD	83-96%	83-93%	85-94%	Van den Broek, GIE 2009		
NBI	UC	75-80%	65-81%	~70%	Van den Broek, Gut 2008 Van den Broek; Endoscopy 2011		
NBI	Non-IBD	89-94%	80-91%	87-91%	Van den Broek, GIE 2009		
Endomicroscopy	UC			97%	Hurlstone, CGH 2007		
Endomicroscopy	Non-IBD	97	99	99%	Kiesslich, Gastro 2004		

Summary

- Neoplasia surveillance techniques in IBD are evolving
- DSC with targeted biopsies offers a safe, simple and economical alternative to WLE with non-targeted and targeted biopsies
- Further data is required to define the utility of DSC in the context of HD-WLE and the impact of DSC on CRC rates
- Further data is required to define the utility of random biopsies with either strategy and to better define optimal surveillance intervals

Modified Algorithm for Neoplasia Surveillance in IBD

THE END ③